期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Developing a mathematical assessment model for blasting patterns management: Sungun copper mine 被引量:9
1
作者 M.Yari M.Monjezi +1 位作者 R.Bagherpour S.Jamali 《Journal of Central South University》 SCIE EI CAS 2014年第11期4344-4351,共8页
Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor ... Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor fragmentation, back break and fly rock. Multi attribute decision making(MADM) can be useful method for selecting the most appropriate blasting pattern among previously performed patterns. In this work, initially, from various already performed patterns, efficient and inefficient patterns are determined using data envelopment analysis(DEA). In the second step, after weighting impressive attributes using experts' opinion, elimination Et choice translating reality(ELECTRE) was used for ranking the efficient patterns and recognizing the most appropriate pattern in the Sungun Copper Mine, Iran. According to the obtained results, blasting pattern with the hole diameter of 15.24 cm, burden of 3 m, spacing of 4 m and stemming of 3.2 m has selected as the best pattern and has selected for future operation. 展开更多
关键词 expert system analytic hierarchy process(AHP) multi-attribute decision making(MADM) elimination Et choice translating reality(ELECTRE) data envelopment analysis(DEA) blasting pattern
下载PDF
A Dual-spline Approach to Load Error Repair in a HEMS Sensor Network
2
作者 Xiaodong Liu Qi Liu 《Computers, Materials & Continua》 SCIE EI 2018年第11期179-194,共16页
In a home energy management system(HEMS),appliances are becoming diversified and intelligent,so that certain simple maintenance work can be completed by appliances themselves.During the measurement,collection and tran... In a home energy management system(HEMS),appliances are becoming diversified and intelligent,so that certain simple maintenance work can be completed by appliances themselves.During the measurement,collection and transmission of electricity load data in a HEMS sensor network,however,problems can be caused on the data due to faulty sensing processes and/or lost links,etc.In order to ensure the quality of retrieved load data,different solutions have been presented,but suffered from low recognition rates and high complexity.In this paper,a validation and repair method is presented to detect potential failures and errors in a domestic energy management system,which can then recover determined load errors and losses.A Kernel Extreme Learning Machine(K-ELM)based model has been employed with a Radial Basis Function(RBF)and optimised parameters for verification and recognition;whilst a Dual-spline method is presented to repair missing load data.According to the experiment results,the method outperforms the traditional B-spline and Cubic-spline methods and can effectively deal with unexpected data losses and errors under variant loss rates in a practical home environment. 展开更多
关键词 Electric load data analysis home energy management quality assurance and control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部