期刊文献+
共找到859篇文章
< 1 2 43 >
每页显示 20 50 100
Oxidation Modification of Polyacrylonitrile-Based Carbon Fiber and Its Electro-Chemical Performance as Marine Electrode for Electric Field Test 被引量:8
1
作者 ZAI Xuerong LIU Ang +2 位作者 TIAN Yuhua CHAI Fanggang FU Yubin 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第2期361-368,共8页
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz... A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect. 展开更多
关键词 carbon fiber electrode electro-chemical oxidation modification electro-chemical performance electric field response electric field test
下载PDF
Noncovalent interactions on the electrocatalytic oxidation of ethanol on a Pt/C electrocatalyst
2
作者 Chenjie Han Yeqing Lyu +4 位作者 Shaona Wang Biao Liu Yi Zhang Jun Lu Hao Du 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期113-123,共11页
Due to their environmentally friendly nature and high energy density,direct ethanol fuel cells have attracted extensive research attention in recent decades.However,the actual Faraday efficiency of the ethanol oxidati... Due to their environmentally friendly nature and high energy density,direct ethanol fuel cells have attracted extensive research attention in recent decades.However,the actual Faraday efficiency of the ethanol oxidation reaction(EOR)is much lower than its theoretical value and the reaction kinetics of the EOR is sluggish due to insufficient active sites on the electrocatalyst surface.Pt/C is recognized as one of the most promising electrocatalysts for the EOR.Thus,the microscopic interfacial reaction mechanisms of the EOR on Pt/C were systematically studied in this work.In metal hydroxide solutions,hydrated alkali cations were found to bind with OH_(ad)through noncovalent interactions to form clusters and occupy the active sites on the Pt/C electrocatalyst surface,thus resulting in low Faraday efficiency and sluggish kinetics of the EOR.To reduce the negative effect of the noncovalent interactions on the EOR,a shield was made on the electrocatalyst surface using 4-trifluoromethylphenyl,resulting in twice the EOR catalytic reactivity of Pt/C. 展开更多
关键词 ethanol electrooxidation Faraday efficiency KINETICS modification of electrocatalyst noncovalent interactions
下载PDF
The decisive role of adsorbed OH^(*)in low‐potential CO electro‐oxidation on single‐atom catalytic sites
3
作者 Yang Li Xian Wang +7 位作者 Ying Wang Zhaoping Shi Yuqi Yang Tuo Zhao Zheng Jiang Changpeng Liu Wei Xing Junjie Ge 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期63-73,共11页
CO impurity-induced catalyst deactivation has long been one of the biggest challenges in proton-exchange membrane fuel cells,with the poisoning phenomenon mainly attributed to the overly strong adsorption on the catal... CO impurity-induced catalyst deactivation has long been one of the biggest challenges in proton-exchange membrane fuel cells,with the poisoning phenomenon mainly attributed to the overly strong adsorption on the catalytic site.Here,we present a mechanistic study that overturns this understanding by using Rh-based single-atom catalysis centers as model catalysts.We precisely modulated the chelation structure of the Rh catalyst by coordinating Rh with C or N atoms,and probed the reaction mechanism by surface-enhanced Raman spectroscopy.Direct spectroscopic evidence for intermediates indicates that the reactivity of adsorbed OH^(*),rather than the adsorption strength of CO^(*),dictates the CO electrocatalytic oxidation behavior.The RhN_(4)sites,which adsorb the OH^(*)intermediate more weakly than RhC4 sites,showed prominent CO oxidation activity that not only far exceeded the traditional Pt/C but also the RhC4 sites with similar CO adsorption strength.From this study,it is clear that a paradigm shift in future research should be considered to rationally design high-performance CO electro-oxidation reaction catalysts by sufficiently considering the water-related reaction intermediate during catalysis. 展开更多
关键词 adsorbed CO^(*)and OH^(*) carbon‐based Rh single‐atom catalysts CO electrooxidation reaction electron interaction MNx moiety
下载PDF
Pd micro-nanoparticles electrodeposited on graphene/polyimide membrane for electrocatalytic oxidation of formic acid 被引量:3
4
作者 张焱 王琴 +2 位作者 叶为春 李佳佳 王春明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2986-2993,共8页
A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microsc... A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD).The Pd micro-nanoparticles were prepared on a COOH-CNTs/PI membrane as a comparative sample.The XRD and SEM investigations for Pd electrodeposition demonstrate that the particle size of Gr/PI composite membrane is smaller than that of COOH-CNTs/PI membrane,while the uniform and dense distribution of Pd micro-nanoparticles on the Gr/PI composite membrane is greater than that on the COOH-CNTs/PI membrane.The electrocatalytic properties of Pd/Gr/PI and Pd/COOH-CNTs/PI catalysts for the oxidation of formic acid were investigated by cyclic voltammetry(CV) and chronoamperometry(CA).It is found that the electrocatalytic activity and stability of Pd/Gr/PI are superior to those of Pd/COOH-CNTs/PI catalyst.This is because smaller metal particles and higher dense distribution desirably provide abundant catalytic sites and mean higher catalytic activity.Therefore,the Pd/Gr/PI catalyst has better catalytic performance for formic acid oxidation than the Pd/COOH-CNTs/PI catalyst. 展开更多
关键词 Pd micro-nanoparticles graphene/polyimide membrane carboxyl carbon nanotubes/polyimide membrane electro catalytic oxidation formic acid electrochemical deposition
下载PDF
Electro-catalytic oxidation of phenol with Ti-base lead dioxide electrode 被引量:1
5
作者 王东田 魏杰 +1 位作者 于秀娟 杨红 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期19-23,共5页
The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition... The Ti base PbO 2 electrode prepared by electrodeposition of PbO 2 on the surface of titanium was used for electro catalytic oxidation of phenol in waste water. The experimental results show that the electrodeposition of PbO 2 at a higher current density for a short time, then followed by a lower current density can get a compact and combinative PbO 2 layer. The properties of a Ti/PbO 2 electrode with an interlayer of oxide are the best. When this kind of electrode is used to treat phenol containing waste water, the phenol removal rate is higher and the slot voltage is lower. In addition, by using the phenol removal rate as an index, the influences of electrolysis current density, mass transfer condition and pH were studied and the optimal condition was confirmed. 展开更多
关键词 electro catalysis Ti base oxide electrode PHENOL
下载PDF
Electro-deoxidation of V_2O_3 in molten CaCl_2-NaCl-CaO 被引量:6
6
作者 Shu-lan Wang Shi-chao Li +1 位作者 Long-fei Wan Chuan-hua Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第3期212-216,共5页
The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaC1 with additions of CaO, a cat... The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaC1 with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4. 展开更多
关键词 vanadous oxide electro-DEoxidation VANADIUM molten salt electrochemical cells
下载PDF
Cobalt phthalocyanine-graphene complex for electro-catalytic oxidation of dopamine 被引量:6
7
作者 Jinghe Yang Di Mu +3 位作者 Yongjun Gao Juan Tan Anhui Lu Ding Ma 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第3期265-269,共5页
Cobalt phthalocyanine-graphene (CoPc-Gr) complex are fabricated through 7r-Tr interaction of each components, with CoPc adsorbed/inserted on/in the graphene sheets. The obtained complex could be used in the electro-... Cobalt phthalocyanine-graphene (CoPc-Gr) complex are fabricated through 7r-Tr interaction of each components, with CoPc adsorbed/inserted on/in the graphene sheets. The obtained complex could be used in the electro-chemical detection of various medicines. CoPc-Gr modified glassy electrode shows excellent response to the electro-oxidation of dopamine (DA) and ascorbic acid (AA), much better than those of CoPc, graphene oxide (GrO) or graphene (Gr) modified electrode. Significantly, the detection of dopamine is a diffusion-controlled process, highly selective, and has a low detection limit and broad linear range. 展开更多
关键词 cobalt phthalocyanine-graphene DOPAMINE electro-oxidation selective detection
下载PDF
DESTRUCTION OF ANTI-SCALANTS IN RO CONCENTRATES BY ELECTROCHEMICAL OXIDATION 被引量:4
8
作者 杨庆峰 马紫峰 +1 位作者 HASSON David SEMIAT Raphael 《化工学报》 EI CAS CSCD 北大核心 2004年第2期339-340,共2页
关键词 反渗透浓缩液 阻垢剂 电化学氧化 脱盐处理 锌电极
下载PDF
Electro-oxidation of Ascorbic Acid on PVP-stabilized Graphene Electrode 被引量:2
9
作者 HAN Dong-fang SHAN Chang-sheng +2 位作者 GUO Li-ping NIU Li HAN Dong-xue 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第2期287-290,共4页
Polyvinylpyrrolidone-stabilized graphene(PVP-graphene) was synthesized and investigated as a modifier for the determination of ascorbic acid(AA). With PVP acting as stabilizer and dispersant, the resulting PVP-gra... Polyvinylpyrrolidone-stabilized graphene(PVP-graphene) was synthesized and investigated as a modifier for the determination of ascorbic acid(AA). With PVP acting as stabilizer and dispersant, the resulting PVP-graphene material could disperse well into water. And the PVP-graphene modified glassy carbon electrode(PVP-graphene-GCE) showed an obvious electrocatalytical activity toward the oxidation of AA in a phosphate buffer solution(PBS, pH=7.0) with an oxidation potential of AA at 0.052 V vs. AglAgCl(sat. KCl). The calibration curve for APt was linear in a concentration range from 1.0×10^-5 to 5.0×10^-4 mol/L with a correlation coefficient of 0.9998. And the detection limit was found to be 1 μtmol/L. During the oxidation of AA, the π-π interaction of graphene plane with conjugated hexenoic aeid-lactone in AA molecules might play a key role. As a result, an obvious decrease of overpotential was achieved at such a PVP-graphene electrode through a possible adsorption/enrichment process, which will probably trigger potential applications for the electroanalysis of some aromatic and heterocyclic compounds. 展开更多
关键词 GRAPHENE POLYVINYLPYRROLIDONE electro-oxidation Ascorbic acid
下载PDF
Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation 被引量:3
10
作者 Yu-Yan Zhou Chang-Hai Liu +5 位作者 Jie Liu Xin-Lei Cai Ying Lu Hui Zhang Xu-Hui Sun Sui-Dong Wang 《Nano-Micro Letters》 SCIE EI CAS 2016年第4期371-380,共10页
A simple one-pot method was developed to prepare Pt Ni alloy nanoparticles,which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid.The nanohybrids are targeting stable nanocatalysts for... A simple one-pot method was developed to prepare Pt Ni alloy nanoparticles,which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid.The nanohybrids are targeting stable nanocatalysts for fuel cell applications.The sizes of the supported Pt Ni nanoparticles are uniform and as small as 1–2 nm.Pt-to-Ni ratio was controllable by simply selecting a Pt Ni alloy target.The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation.The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst.The electronic structure characterization on the Pt Ni nanoparticles demonstrates that the electrons are transferred from Ni to Pt,which can suppress the CO poisoning effect. 展开更多
关键词 PtNi nanoparticles Multiwalled carbon nanotubes Methanol electro-oxidation
下载PDF
Ultrasonic Electro-oxidation Process of Molybdenite Concentrate 被引量:1
11
作者 曹占芳 钟宏 +2 位作者 闻振乾 符剑刚 陈娜 《过程工程学报》 EI CAS CSCD 北大核心 2008年第5期926-931,共6页
The oxidation of MoS2 concentrate in NaCl solution electrolysis environment and the impact of ultrasonic field on the leaching process of Mo were investigated. The decomposition process of MoS2 can be accelerated by u... The oxidation of MoS2 concentrate in NaCl solution electrolysis environment and the impact of ultrasonic field on the leaching process of Mo were investigated. The decomposition process of MoS2 can be accelerated by ultrasonic field. When there are iron ions, anode potential is decreased about 0.7 V than that without iron ions, iron ions in the solution play an electronic transmission role by directly joining the electrode reaction of anode and oxidation leaching process. The results indicate that the leaching rate of Mo can achieve 99.5% with ultrasonic field exertion working 4 min in every 5 min under the conditions that the liquid-solid ratio is 20, mixing rate 500 r/min, iron ion concentration 6%, leaching temperature 40℃, pH (initialization) 1, and leaching time 4 h, respectively. 展开更多
关键词 电镀技术 氧化过程 磁场 电化学
下载PDF
Ru effect on the catalytic performance of Pd@Ru/C catalysts for methanol electro-oxidation 被引量:2
12
作者 Yanbiao Ren Shichao Zhang Xin Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期232-238,共7页
Pd@Ru bimetallic nanoparticles deposited on carbon black electro-catalysts have been fabricated by microwave-assisted polyol reduction method and investigated for methanol electro-oxidation (MEO). The structure and ... Pd@Ru bimetallic nanoparticles deposited on carbon black electro-catalysts have been fabricated by microwave-assisted polyol reduction method and investigated for methanol electro-oxidation (MEO). The structure and electro-catalytic properties of the as-prepared catalysts were characterized by XRD, SEM, TEM and cyclic voltammetry (CV) techniques. The results showed that the introduction of Ru element (2-10 wt%) into Pd 20 wt%/C (hereafter, denoted as Pd/C) produced a series of core-shell structured binary catalysts. Pd@Ru 5 wt%/C (hereafter, denoted as Pd@Rus/C) catalyst displayed the highest catalytic activity towards MEO. And the mass activity of Pd@Ru5/C electrode catalyst at E = -0.038 V (vs. Hg/HgO) was 1.42 times higher than that of Pd/C electrode catalyst. In addition, the relationship between the catalytic stability for MEO on Pd@Ru/C catalysts and the value of dbp/dfp (the ratio of MEO peak current density in the negative scan and positive scan) were also investigated. The result demonstrated that Pd@Rus/C offering the smallest value of Jbp/Jfp displayed the best stable catalytic performance. 展开更多
关键词 methanol electro-oxidation catalytic performance poisoning tolerance core-shell structured catalyst
下载PDF
Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media 被引量:2
13
作者 Shengzhou Chen Fei Ye Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期199-204,共6页
Carbon nanotubes-Nafion (CNTs-Nation) composites were prepared by impregnated CNTs with Nation in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by ... Carbon nanotubes-Nafion (CNTs-Nation) composites were prepared by impregnated CNTs with Nation in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nation incorporation in CNTs-Nation composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Naton showed good dispersion and the best CO oxidation and methanol electro-oxidation activities. 展开更多
关键词 carbon nanotubes-Nafion composites Pt-Ru catalysts methanol electro-oxidation
下载PDF
Preparation optimization of multilayer-structured SnO_2–Sb–Ce/Ti electrode for efficient electrocatalytic oxidation of tetracycline in water 被引量:1
14
作者 Kun Yang Yuyu Liu +1 位作者 Jiawen Liu Jinli Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第12期2622-2627,共6页
In this study, electrodeposition and thermal decomposition were alternatively used for the fabrication of a series of novel multilayer-structured SnO_2–Sb–Ce/Ti(SSCT) electrodes, and their physiochemical and electro... In this study, electrodeposition and thermal decomposition were alternatively used for the fabrication of a series of novel multilayer-structured SnO_2–Sb–Ce/Ti(SSCT) electrodes, and their physiochemical and electrochemical properties were investigated for electrochemical oxidation of tetracycline(TC) in aqueous medium.Experimentally, after the SnO_2–Sb–Ce(SSC) composite was electrodeposited for 120 s on the titanium substrate in aqueous solution, the outer thermal coatings composed of SSC were synthesized by a hydrothermal method.Both influences of electrodeposition time(T_(ed)) and thermal decomposition time(Ttd) were investigated to obtain the optimum preparation. It was found that when increasing T_(ed)to a certain extent a longer lifetime of electrode can be achieved, which was attributed to a more solid interlayer structure. A notable SSCTT_(ed),Ttdelectrode,i.e., SSCT3,10, which was prepared through three times of 120 s' electrodeposition(T_(ed)= 3) and ten times of thermal decomposition(Ttd= 10) obtained the highest oxygen evolution potential 3.141 V vs. SCE. In this selected electrode, when 10 mg·L^(-1) initial TC concentration was added to this wastewater, the highest color removal efficiency and mineralization rate of TC were 72.4% and 41.6%, respectively, with an applied electricity density of 20 m A·cm^(-2) and treatment time of 1 h. These results presented here demonstrate that the combined application of electrodeposition and thermal decomposition is effective in realization of enhanced electrocatalytic oxidation activity. 展开更多
关键词 MULTILAYER STRUCTURED electrode Nano-hollow SPHERE ANTIBIOTICS electro-oxidation
下载PDF
Solvent effects on Pt-Ru/C catalyst for methanol electro-oxidation 被引量:2
15
作者 Jinwei Chen Chunping Jiang Hui Lu Lan Feng Xin Yang Liangqiong Li Ruilin Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第3期341-345,共5页
Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying de... Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation. 展开更多
关键词 solvent effect fuel cell methanol electro-oxidation Pt-Ru/C catalyst TETRAHYDROFURAN
下载PDF
Activation of commercial Pt/C catalyst toward glucose electro-oxidation by irreversible Bi adsorption 被引量:1
16
作者 Petri Kanninen Tanja Kallio 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1446-1452,共7页
The effect of irreversibly adsorbed Bi on commercial Pt/C catalyst toward glucose electro-oxidation re- action (GOR) in different electrolytes (acidic, neutral, alkaline) is studied. Bi is successfully deposited o... The effect of irreversibly adsorbed Bi on commercial Pt/C catalyst toward glucose electro-oxidation re- action (GOR) in different electrolytes (acidic, neutral, alkaline) is studied. Bi is successfully deposited on Pt/C from Bi3+ containing acidic solution from 0 to 90% coverage degree. The stability of the Bi layer in acid and alkaline corresponded to previous studies and started to dissolve at 0.7 V and 0.8 V versus re- versible hydrogen electrode (RIIE), respectively. However, in neutral phosphate buffer the layer showed remarkable stability to at least 1.2V versus RHE. Bi modification at low (20%) and high (80%) coverage showed the highest increase in the activity of Pt/C toward GOR by a factor up to 7 due to the increased poisoning resistance of the modified catalyst. The effect of poisoning was especially reduced at high Bi coverage (80%), which shows that adsorbate blocked by Bi through the third-body effect is effective. Finally, with or without Bi modification GOR on PtIC was most active in alkaline conditions. 展开更多
关键词 Glucose electro-oxidation PLATINUM BISMUTH Catalyst poisoning Renewable resources
下载PDF
Electrochemical analysis and convection-enhanced mass transfer synergistic effect of MnO_x/Ti membrane electrode for alcohol oxidation 被引量:2
17
作者 Hong Wang Xin Wei +3 位作者 Yujun Zhang Ronghua Ma Zhen Yin Jianxin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期150-156,共7页
The different electrocatalytic reactors could be constructed for the electrocatalytic oxidation of 2,2,3,3-tetrafluoro-1-propanol(TFP) with two typical MnO_x/Ti electrodes, i.e.the electrocatalytic membrane reactor(EC... The different electrocatalytic reactors could be constructed for the electrocatalytic oxidation of 2,2,3,3-tetrafluoro-1-propanol(TFP) with two typical MnO_x/Ti electrodes, i.e.the electrocatalytic membrane reactor(ECMR) with the Ti membrane electrode and the electrocatalytic reactor(ECR) with the traditional Ti plate electrode.For the electro-oxidation of TFP, the conversion with membrane electrode(70.1%) in the ECMR was 3.3 and 1.7 times higher than that of the membrane electrode without permeate flow(40.8%) in the ECMR and the plate electrode(21.5%) in the ECR, respectively.Obviously, the pore structure of membrane and convection-enhanced mass transfer in the ECMR dramatically improved the catalytic activity towards the electro-oxidation of TFP.The specific surface area of porous electrode was 2.22 m^2·g^(-1).The surface area of plate electrode was 2.26 cm^2(1.13 cm^2× 2).In addition, the electrochemical results showed that the mass diffusion coefficient of the MnO_x/Ti membrane electrode(1.80 × 10^(-6) cm^2·s^(-1)) could be increased to 6.87 × 10^(-6) cm^2·s^(-1) at the certain flow rate with pump, confirming the lower resistance of mass transfer due to the convection-enhanced mass transfer during the operation of the ECMR.Hence, the porous structure and convection-enhanced mass transfer would improve the electrochemical property of the membrane electrode and the catalytic performance of the ECMR,which could give guideline for the design and application of the porous electrode and electrochemical reactor. 展开更多
关键词 electrocatalytic MEMBRANE REACTOR (ECMR) MnOx/Ti MEMBRANE electrode electro-oxidation of 2 2 3.3-tetrafluoro-1-propanol(TFP) electroCHEMICAL REACTOR (ECR) electroCHEMICAL measurement
下载PDF
Preparation of Platinum Implanted Glassy Carbon Electrode and Electro-oxidation of Formic Acid and Formaldehyde
18
作者 Cun Zhong ZHANG Jing YANG +1 位作者 Xiao Lin LU Zhong Da WU( Department of Chemistry, Beijing Normal University, Beijing 100875) 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第1期71-74,共4页
The glassy carbon substrates were bombarded with 5 X 10(17) ions/cm(2) of platinum. The surface composition of implanted electrode and concentration-depth profiles of various elements were measured by AES. The chemica... The glassy carbon substrates were bombarded with 5 X 10(17) ions/cm(2) of platinum. The surface composition of implanted electrode and concentration-depth profiles of various elements were measured by AES. The chemical state of Pt in glassy carbon electrode implanted with platinum (Pt/GC) was detected by X-ray Photoelectron Spectroscopy (XPS). The electro-oxidation of HCOOH and HCHO have been investigated on Pt/CC and smooth Pt electrodes. The results show that the platinum implanted into glassy carbon is much more active than the smooth platinum metal for electro-oxidation of HCOOH and HCHO. 展开更多
关键词 ion implantation electro-oxidation formic acid FORMALDEHYDE
下载PDF
Electro-oxidation of mixed reactants of ethanol and formate on Pd/C in alkaline fuel cells
19
作者 Myounghoon Choun Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期683-690,共8页
Direct ethanol fuel cells have attracted attention as an alternative energy technology due to several advantages such as high theoretical energy density and abundant supply of ethanol.In spite of the advantages,commer... Direct ethanol fuel cells have attracted attention as an alternative energy technology due to several advantages such as high theoretical energy density and abundant supply of ethanol.In spite of the advantages,commercialization of direct ethanol fuel cells is hampered by the relatively low performance caused by its slow oxidation kinetics and difficulty of complete oxidation.In this study,formate,which has relatively faster oxidation kinetics,was mixed with ethanol to compensate the latter’s sluggish kinetics.Effects of p H,concentration,scan rate,and temperature on the mixed reactants oxidation on Pd were investigated by electrochemical experiments such as potential sweep and potentiostatic methods.Furthermore,the potential of the mixed reactants as fuel was evaluated by single cell experiments.As a result,we demonstrate that mixing formate with ethanol results in enhanced power performance in a single cell system. 展开更多
关键词 ETHANOL FORMATE Mixed reactants Alkaline media PALLADIUM electro-oxidation
下载PDF
Facile synthesis and enhanced catalytic activity of electrochemically dealloyed platinum–nickel nanoparticles towards formic acid electro-oxidation
20
作者 Maryam Kiani Jie Zhang +5 位作者 Yan Luo Yihan Chen Jinwei Chen Jinlong Fan Gang Wang Ruilin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期9-16,I0001,共9页
To obtain the electrocatalyst with an improved electrocatalytic performance towards formic acid electrooxidation(FAEO), a simple impregnation method is used to prepare Pt3Ni nanoparticles loaded on carbon black, assis... To obtain the electrocatalyst with an improved electrocatalytic performance towards formic acid electrooxidation(FAEO), a simple impregnation method is used to prepare Pt3Ni nanoparticles loaded on carbon black, assisted with electrochemically dealloying process. The X-ray powder diffraction(XRD) results as well as transmission electron microscopy(TEM) analysis of as-synthesized electrocatalyst demonstrates that the reduction temperature has a great influence on the FAEO activity of the dealloyed Pt3Ni nanoparticles. X-ray photoelectron spectroscopy(XPS) analyses confirm the variation in the electronic structure of platinum by incorporation of nickel atoms which reduces chemisorption of toxic carbon monoxide and promotes the dehydrogenation pathway of FAEO. The size of the dealloyed Pt3Ni nanoparticles remains within the range of about 2.7 nm. All electrochemical results illustrate that the performance of the asobtained electrocatalyst towards the FAEO is significantly enhanced. Moreover, the carbon black content,incorporation of Ni atoms, and reduction temperature conditions have been proven to be the key factors for modification of the crystal structure and morphology which leads to enhanced catalytic performance. 展开更多
关键词 Formic acid electro-oxidation electroCATALYSIS Pt3Ni nanoparticles DEALLOYING DEHYDROGENATION PATHWAY
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部