Electricity is one of the most widely used forms of energy. Being a renewable source of energy small hydropower is considered as an environment—friendly and cheap source of electricity. The installation cost of the s...Electricity is one of the most widely used forms of energy. Being a renewable source of energy small hydropower is considered as an environment—friendly and cheap source of electricity. The installation cost of the small hydropower project depends mainly on two parts—civil works and electromechanical equipment. One of the most important element on the recovery of a small hydro-power plant is the electromechanical equipment (turbine-alternator). The present paper intends to develop a correlation to determine the cost based on the cost influencing parameters as power and head using three different methods, namely;sigma plot method, linest method and logest method. An attempt has also been made to identify the best correlation among the three models closer to the actual cost of electro-mechanical equipment as collected from recently developed projects.展开更多
The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology pro...The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.展开更多
The reasonable model of fuzzy comprehensive judgment is found by means of the theory and method of multi-level fuzzy judgment on the basis of the judging index system of mechanical equipment bid sheets. The scientific...The reasonable model of fuzzy comprehensive judgment is found by means of the theory and method of multi-level fuzzy judgment on the basis of the judging index system of mechanical equipment bid sheets. The scientific method is supplied for the judging bids, the key chain of the judging process of the mechanical equipment bid sheet. All factors are considered, especially quantitative factors or qualitative factors in the process of judgment.展开更多
There are abundant energy reserves such as oil,natural gas,hydrate,and wind energy in the ocean.Countries around the globe are competing to advance their marine energy development technologies.The exploitation of mari...There are abundant energy reserves such as oil,natural gas,hydrate,and wind energy in the ocean.Countries around the globe are competing to advance their marine energy development technologies.The exploitation of marine resources relies on cutting-edge industrial equipment.After decades of R&D endeavors,China has obtained most of the key technologies for the design,production,testing,and field application of marine energy development equipment(Xie and Zeng,2021).展开更多
Floors subjected to mechanical equipment loads frequently present problems associated with excessive vibration which can cause human discomfort or even reduce the structure service life.In this context,this work aims ...Floors subjected to mechanical equipment loads frequently present problems associated with excessive vibration which can cause human discomfort or even reduce the structure service life.In this context,this work aims to develop an analysis methodology in order to assess the fatigue performance of steel-concrete composite floors,when subjected to vibrations induced by mechanical equipment.The studied structural model corresponds to a steel-concrete composite floor spanning 10 m by 10 m,with a total area of 100 m^(2).The numerical model developed for the dynamic analysis adopted the usual mesh refinement techniques present in finite element method(FEM)simulations implemented in the ANSYS program.The investigated floor dynamic response was calculated through the consideration of the dynamic loadings imposed by the mechanical equipment,simulated based on the use of harmonic forces applied on the concrete slabs.Furthermore,the dynamic structural response was performed considering several scenarios for the positioning of the equipment,in order to verify the occurrence of excessive vibration.The fatigue assessment is based on a linear cumulative damage rule through the use of the Rainflow-counting algorithm and S-N curves from traditional design codes.The results of this investigation indicated that the equipment position affects directly the floor dynamic structural response and also significantly influences the structure service life.展开更多
Taking Zhongyu 3 as the experimental variety,this paper analyzed the effects of different sowing depths(5 cm and 8 cm)and sowing equipment(ZHSB-10 medium-sized sowing machine and 2B-2 small sowing machine)on the growt...Taking Zhongyu 3 as the experimental variety,this paper analyzed the effects of different sowing depths(5 cm and 8 cm)and sowing equipment(ZHSB-10 medium-sized sowing machine and 2B-2 small sowing machine)on the growth,yield and components of yield of mechanized sowing maize,to provide references for mechanized maize production in southwest ecological zone.The results showed that the germination rate,plant height uniformity,and most agronomic traits of maize plant were higher at the sowing depth of 5 cm;with the growth of the maize,the effects of the sowing depth on agronomic traits of maize gradually declined;the effects of the sowing depth on the empty stalk rate,double ear rate,lodging rate,and lodging and stem broken rate were smaller;the sowing depth of 5 cm could increase the yield of mechanized sowing maize and most yield traits of maize.Different sowing machines had smaller effects on the germination rate,plant height uniformity,and agronomic traits of all growth stages,empty stalk rate,double ear rate,lodging rate,lodging and stem broken rate,yield,and components of yield of mechanized sowing maize.展开更多
Lateral epicondylitis is a relatively common clinical prob lem, easily recognized on palpation of the lateral protu berance on the elbow. Despite the "itis" suffix, it is no an inflammatory process. Therapeu...Lateral epicondylitis is a relatively common clinical prob lem, easily recognized on palpation of the lateral protu berance on the elbow. Despite the "itis" suffix, it is no an inflammatory process. Therapeutic approaches with topical non-steroidal anti-inflammatory drugs, cortico steroids and anesthetics have limited benefit, as would be expected if inflammation is not involved. Other ap proaches have included provision of healing cytokine from blood products or stem cells, based on the recog nition that this repetitive effort-derived disorder repre sents injury. Noting calcification/ossification of tendon attachments to the lateral epicondyle(enthesitis), dry needling, radiofrequency, shock wave treatments and surgical approaches have also been pursued. Physi ologic approaches, including manipulation, therapeuti ultrasound, phonophoresis, iontophoresis, acupuncture and exposure of the area to low level laser light, ha also had limited success. This contrasts with the benefi of a simple mechanical intervention, reducing the stres on the attachment area. This is based on displacemen of the stress by use of a thin(3/4-1 inch) band applied just distal to the epicondyle. Thin bands are required as thick bands(e.g., 2-3 inch wide) simply reduce mus cle strength, without significantly reducing stress. Thi approach appears to be associated with a failure rateless than 1%, assuming the afflicted individual modifies the activity that repeatedly stresses the epicondylar attachments.展开更多
Aimed at the difficulties in analyzing the buffer characteristics of airbag system by using thermodynamic or experimental method only,the finite element method was used to establish nonlinear models for heavy equipmen...Aimed at the difficulties in analyzing the buffer characteristics of airbag system by using thermodynamic or experimental method only,the finite element method was used to establish nonlinear models for heavy equipment and its airbag system.The models' efficiency and correctness were validated by using on-site experiment data in vehicle airdrop landing.The simulation results agree very well with the experiment results.Then,the environment adaptability of airbag system of heavy equipment under high-altitude condition was studied by using the models.Finally,some solutions were given to solve the overturn problem in the landing.展开更多
Firstly,this paper analyzes the necessity of highway engineering construction machinery and equipment management,discusses the configuration management of highway engineering machinery and equipment,and then puts forw...Firstly,this paper analyzes the necessity of highway engineering construction machinery and equipment management,discusses the configuration management of highway engineering machinery and equipment,and then puts forward the problems existing in the management and maintenance of highway engineering machinery construction equipment.Finally,the management and maintenance measures of highway engineering machinery construction equipment are discussed in a targeted manner.展开更多
Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the ...Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the stable operation of the production process,the condition monitoring and fault diagnosis of equipment have become equally important.The fault diagnosis of equipment in actual production is often challenged by variable working conditions,large differences in data distribution,and lack of labeled samples,etc.Traditional fault diagnosis methods are often difficult to achieve ideal results in these complex environments.Transfer learning(TL)as an emerging technology can effectively utilize existing knowledge and data to improve the diagnostic performance.Firstly,this paper analyzes the trend of mechanical equipment fault diagnosis and explains the basic concept of TL.Then TL based on parameters,TL based on features,TL based on instances and domain adaptive(DA)methods are summarized and analyzed in terms of existing TL methods.Finally,the problems faced in the current TL research are summarized and the future development trend is pointed out.This review aims to help researchers in related fields understand the latest progress of TL and promote the application and development of TL in mechanical equipment diagnosis.展开更多
The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, i...The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, including the photorefractive effect of FBG, the physical formation, and the relation between optical properties and grating parameters, are investigated. The plaster, encapsulation and distribution planning of FBG sensor (FBGS), which is used to monitor heavy duty mechanical equipment under abominable environment and extreme conditions, are also studied. In addition, theoretical and experimental researches on the strain, temperature, displacement, and stress transmission characteristics between FBGS and detection interface are presented. The principle and method for temperature compensation in non-uniformity temperature field are described in detail as well. Comparing with the traditional sensing monitoring techniques, the application of FBGS technology on digital monitoring and diagnosis for heavy duty mechanical equipment has a number of significant technical advantages and will make a new breakthrough in this field.展开更多
Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for co...Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for complex mechanical equipment normally needs multiple attributes,which can lead to the rule number explosion problem in BRB,and limit the efficiency and accuracy.To solve this problem,a novel Combination Belief Rule Base(C-BRB)model based on Directed Acyclic Graph(DAG)structure is proposed in this paper.By dispersing numerous attributes into the parallel structure composed of different sub-BRBs,C-BRB can effectively reduce the amount of calculation with acceptable result.At the same time,a path selection strategy considering the accuracy of child nodes is designed in C-BRB to obtain the most suitable submodels.Finally,a fusion method based on Evidential Reasoning(ER)rule is used to combine the belief rules of C-BRB and generate the final results.To illustrate the effectiveness and reliability of the proposed method,a case study of fault diagnosis of rolling bearing is conducted,and the result is compared with other methods.展开更多
The generation and development of microcracks of SiCp/Al materials in the machining process were researched, and the forming causes and mechanism of the cut surface morphology for ap=0.2 mm or ap=0.4 mm and at 2 m/min...The generation and development of microcracks of SiCp/Al materials in the machining process were researched, and the forming causes and mechanism of the cut surface morphology for ap=0.2 mm or ap=0.4 mm and at 2 m/min~10 m/min were systematically analyzed. The supporting and "floor"roles of aluminum are wake at a shallower cutting depth and a lower speed, the SiC particles are shed under the role of cutting force, and the microcrack size of cut surface is larger. With the increase in the cutting depth and the cutting speed, the cutting temperature increases, the supporting and "floor" roles of aluminum are enhanced, the shedding and fracture of the reinforcement particles are flexible under the action of the cutting force, the fracture of cutting transforms from brittle to ductile, and the expansion of microcrack on the entire surface tends to balance with a smaller size. A curve between the cutting force and the cutting speed was plotted, a microcrack form of the cut surface was given, and some theoretical basis is provided for the mechanical processing and the surface quality.展开更多
文摘Electricity is one of the most widely used forms of energy. Being a renewable source of energy small hydropower is considered as an environment—friendly and cheap source of electricity. The installation cost of the small hydropower project depends mainly on two parts—civil works and electromechanical equipment. One of the most important element on the recovery of a small hydro-power plant is the electromechanical equipment (turbine-alternator). The present paper intends to develop a correlation to determine the cost based on the cost influencing parameters as power and head using three different methods, namely;sigma plot method, linest method and logest method. An attempt has also been made to identify the best correlation among the three models closer to the actual cost of electro-mechanical equipment as collected from recently developed projects.
基金Jilin Science and Technology Development Plan Project(No.20200403075SF)Doctoral Research Start-Up Fund of Northeast Electric Power University(No.BSJXM-2018202).
文摘The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.
文摘The reasonable model of fuzzy comprehensive judgment is found by means of the theory and method of multi-level fuzzy judgment on the basis of the judging index system of mechanical equipment bid sheets. The scientific method is supplied for the judging bids, the key chain of the judging process of the mechanical equipment bid sheet. All factors are considered, especially quantitative factors or qualitative factors in the process of judgment.
文摘There are abundant energy reserves such as oil,natural gas,hydrate,and wind energy in the ocean.Countries around the globe are competing to advance their marine energy development technologies.The exploitation of marine resources relies on cutting-edge industrial equipment.After decades of R&D endeavors,China has obtained most of the key technologies for the design,production,testing,and field application of marine energy development equipment(Xie and Zeng,2021).
基金the support for this work provided by the Brazilian Science Foundations:CAPES,CNPq and FAPERJ.
文摘Floors subjected to mechanical equipment loads frequently present problems associated with excessive vibration which can cause human discomfort or even reduce the structure service life.In this context,this work aims to develop an analysis methodology in order to assess the fatigue performance of steel-concrete composite floors,when subjected to vibrations induced by mechanical equipment.The studied structural model corresponds to a steel-concrete composite floor spanning 10 m by 10 m,with a total area of 100 m^(2).The numerical model developed for the dynamic analysis adopted the usual mesh refinement techniques present in finite element method(FEM)simulations implemented in the ANSYS program.The investigated floor dynamic response was calculated through the consideration of the dynamic loadings imposed by the mechanical equipment,simulated based on the use of harmonic forces applied on the concrete slabs.Furthermore,the dynamic structural response was performed considering several scenarios for the positioning of the equipment,in order to verify the occurrence of excessive vibration.The fatigue assessment is based on a linear cumulative damage rule through the use of the Rainflow-counting algorithm and S-N curves from traditional design codes.The results of this investigation indicated that the equipment position affects directly the floor dynamic structural response and also significantly influences the structure service life.
基金Supported by Research and Development of the Third Batch of Application Technology in Chengdu in 2017"Development and Application of New Varieties of High Quality and Efficient Grain and Oil Crops"
文摘Taking Zhongyu 3 as the experimental variety,this paper analyzed the effects of different sowing depths(5 cm and 8 cm)and sowing equipment(ZHSB-10 medium-sized sowing machine and 2B-2 small sowing machine)on the growth,yield and components of yield of mechanized sowing maize,to provide references for mechanized maize production in southwest ecological zone.The results showed that the germination rate,plant height uniformity,and most agronomic traits of maize plant were higher at the sowing depth of 5 cm;with the growth of the maize,the effects of the sowing depth on agronomic traits of maize gradually declined;the effects of the sowing depth on the empty stalk rate,double ear rate,lodging rate,and lodging and stem broken rate were smaller;the sowing depth of 5 cm could increase the yield of mechanized sowing maize and most yield traits of maize.Different sowing machines had smaller effects on the germination rate,plant height uniformity,and agronomic traits of all growth stages,empty stalk rate,double ear rate,lodging rate,lodging and stem broken rate,yield,and components of yield of mechanized sowing maize.
文摘Lateral epicondylitis is a relatively common clinical prob lem, easily recognized on palpation of the lateral protu berance on the elbow. Despite the "itis" suffix, it is no an inflammatory process. Therapeutic approaches with topical non-steroidal anti-inflammatory drugs, cortico steroids and anesthetics have limited benefit, as would be expected if inflammation is not involved. Other ap proaches have included provision of healing cytokine from blood products or stem cells, based on the recog nition that this repetitive effort-derived disorder repre sents injury. Noting calcification/ossification of tendon attachments to the lateral epicondyle(enthesitis), dry needling, radiofrequency, shock wave treatments and surgical approaches have also been pursued. Physi ologic approaches, including manipulation, therapeuti ultrasound, phonophoresis, iontophoresis, acupuncture and exposure of the area to low level laser light, ha also had limited success. This contrasts with the benefi of a simple mechanical intervention, reducing the stres on the attachment area. This is based on displacemen of the stress by use of a thin(3/4-1 inch) band applied just distal to the epicondyle. Thin bands are required as thick bands(e.g., 2-3 inch wide) simply reduce mus cle strength, without significantly reducing stress. Thi approach appears to be associated with a failure rateless than 1%, assuming the afflicted individual modifies the activity that repeatedly stresses the epicondylar attachments.
文摘Aimed at the difficulties in analyzing the buffer characteristics of airbag system by using thermodynamic or experimental method only,the finite element method was used to establish nonlinear models for heavy equipment and its airbag system.The models' efficiency and correctness were validated by using on-site experiment data in vehicle airdrop landing.The simulation results agree very well with the experiment results.Then,the environment adaptability of airbag system of heavy equipment under high-altitude condition was studied by using the models.Finally,some solutions were given to solve the overturn problem in the landing.
文摘Firstly,this paper analyzes the necessity of highway engineering construction machinery and equipment management,discusses the configuration management of highway engineering machinery and equipment,and then puts forward the problems existing in the management and maintenance of highway engineering machinery construction equipment.Finally,the management and maintenance measures of highway engineering machinery construction equipment are discussed in a targeted manner.
基金National Natural Science Foundation of China(52065030)Key Scientific Research Projects of Yunnan Province(202202AC080008).
文摘Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the stable operation of the production process,the condition monitoring and fault diagnosis of equipment have become equally important.The fault diagnosis of equipment in actual production is often challenged by variable working conditions,large differences in data distribution,and lack of labeled samples,etc.Traditional fault diagnosis methods are often difficult to achieve ideal results in these complex environments.Transfer learning(TL)as an emerging technology can effectively utilize existing knowledge and data to improve the diagnostic performance.Firstly,this paper analyzes the trend of mechanical equipment fault diagnosis and explains the basic concept of TL.Then TL based on parameters,TL based on features,TL based on instances and domain adaptive(DA)methods are summarized and analyzed in terms of existing TL methods.Finally,the problems faced in the current TL research are summarized and the future development trend is pointed out.This review aims to help researchers in related fields understand the latest progress of TL and promote the application and development of TL in mechanical equipment diagnosis.
基金Supported by the National Natural Science Foundation of China (Grant Nos.50620130441 and 50775167)
文摘The digital monitoring principle and technologies for heavy duty mechanical equipment based on fiber Bragg grating (FBG) technology are introduced in this paper. The fundamentals of new-style FBG sensing technology, including the photorefractive effect of FBG, the physical formation, and the relation between optical properties and grating parameters, are investigated. The plaster, encapsulation and distribution planning of FBG sensor (FBGS), which is used to monitor heavy duty mechanical equipment under abominable environment and extreme conditions, are also studied. In addition, theoretical and experimental researches on the strain, temperature, displacement, and stress transmission characteristics between FBGS and detection interface are presented. The principle and method for temperature compensation in non-uniformity temperature field are described in detail as well. Comparing with the traditional sensing monitoring techniques, the application of FBGS technology on digital monitoring and diagnosis for heavy duty mechanical equipment has a number of significant technical advantages and will make a new breakthrough in this field.
基金supported by the Natural Science Foundation of China(Nos.61773388,61751304,61833016,61702142,U1811264 and 61966009)the Shaanxi Outstanding Youth Science Foundation,China(No.2020JC-34)+2 种基金the Key Research and Development Plan of Hainan,China(No.ZDYF2019007)China Postdoctoral Science Foundation(No.2020M673668)Guangxi Key Laboratory of Trusted Software,China(No.KX202050)。
文摘Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for complex mechanical equipment normally needs multiple attributes,which can lead to the rule number explosion problem in BRB,and limit the efficiency and accuracy.To solve this problem,a novel Combination Belief Rule Base(C-BRB)model based on Directed Acyclic Graph(DAG)structure is proposed in this paper.By dispersing numerous attributes into the parallel structure composed of different sub-BRBs,C-BRB can effectively reduce the amount of calculation with acceptable result.At the same time,a path selection strategy considering the accuracy of child nodes is designed in C-BRB to obtain the most suitable submodels.Finally,a fusion method based on Evidential Reasoning(ER)rule is used to combine the belief rules of C-BRB and generate the final results.To illustrate the effectiveness and reliability of the proposed method,a case study of fault diagnosis of rolling bearing is conducted,and the result is compared with other methods.
文摘The generation and development of microcracks of SiCp/Al materials in the machining process were researched, and the forming causes and mechanism of the cut surface morphology for ap=0.2 mm or ap=0.4 mm and at 2 m/min~10 m/min were systematically analyzed. The supporting and "floor"roles of aluminum are wake at a shallower cutting depth and a lower speed, the SiC particles are shed under the role of cutting force, and the microcrack size of cut surface is larger. With the increase in the cutting depth and the cutting speed, the cutting temperature increases, the supporting and "floor" roles of aluminum are enhanced, the shedding and fracture of the reinforcement particles are flexible under the action of the cutting force, the fracture of cutting transforms from brittle to ductile, and the expansion of microcrack on the entire surface tends to balance with a smaller size. A curve between the cutting force and the cutting speed was plotted, a microcrack form of the cut surface was given, and some theoretical basis is provided for the mechanical processing and the surface quality.