The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag...The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.展开更多
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l...A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.展开更多
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi...Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.展开更多
Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels.This promising process,however,is limited by its sluggish reaction kinetics and...Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels.This promising process,however,is limited by its sluggish reaction kinetics and high-cost catalysts.The two-dimensional(2D)transition metal dichalcogenides(TMDCs)have presented great potential as electrocatalytic materials due to their tunable bandgaps,abundant defective active sites,and good chemical stability.Consequently,phase engineering,defect engineering and interface engineering have been adopted to manipulate the electronic structure of TMDCs for boosting their exceptional catalytic performance.Particularly,it is essential to clarify the local structure of catalytically active sites of TMDCs and their structural evolution in catalytic reactions using atomic resolution electron microscopy and the booming in situ technologies,which is beneficial for exploring the underlying reaction mechanism.In this review,the growth regulation,characterization,particularly atomic configurations of active sites in TMDCs are summarized.The significant role of electron microscopy in the understanding of the growth mechanism,the controlled synthesis and functional optimization of 2D TMDCs are discussed.This review will shed light on the design and synthesis of novel electrocatalysts with high performance,as well as prompt the application of advanced electron microscopy in the research of materials science.展开更多
This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters...This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.展开更多
A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of part...A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of particle-in-cell simulations in two-dimensional(2D)and three-dimensional(3D)systems.Our result indicates that in the 2D simulation,energy conversion in the SR is dominated by parallel components,with the main influencing factor being the parallel electric field,which is not consistent with the observation.However,a case that is similar to the observation is found in the 3D simulation,suggesting that the observation result may be attributed to the 3D characteristics.Our findings provide a potential explanation for the satellite observation.展开更多
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina...Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.展开更多
Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy...Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths.展开更多
Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient ...Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Photocatalysis. which utilizes solar energy to trigger chemical reactions, is one of the most desirable solar-energy-conversion approaches. Graphitic carbon nitride (g-C3N4). as an attractive metal-free photocatalys...Photocatalysis. which utilizes solar energy to trigger chemical reactions, is one of the most desirable solar-energy-conversion approaches. Graphitic carbon nitride (g-C3N4). as an attractive metal-free photocatalyst, has drawn worldwide research interest in the area of solar energy conversion due to its easy synthesis, earth-abundant nature, physicochemical stability and visible-light-responsive properties. Over the past ten years, g-C3N4 based photocatalysts have experienced intensive exploration, and great progress has been achieved. However, the solar conversion efficiency is still far from industrial applications due to the wide bandgap, severe charge recombination, and lack of surface active sites. Many strategies have been proposed to enhance the light absorption, reduce the recombination of charge carriers and accelerate the surface kinetics. This work makes a crucial review about the main contributions of various strategies to the light harvesting, charge separation and surface kinetics of g-C3N4 photocatalyst. Furthermore, the evaluation measurements for the enhanced light harvesting, reduced charge recombination and accelerated surface kinetics will be discussed. In addition, this review proposes future trends to enhance the photocatalytic performance of g-C3N4 photocatalyst for the solar energy conversion.展开更多
The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column c...The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results.展开更多
In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is mod...In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is modeled as a combination of a linear viscous damping and a linear spring. Using the frequency domain method, the optimal damping coefficient of the generator PTO system is derived to achieve the optimal conversion efficiency(capture width ratio).Based on the potential flow theory and the higher-order boundary element method(HOBEM), we constructed a threedimensional model of double-float WEC to study its hydrodynamic performance and response in the time domain. Only the heave motion of the two-body system is considered and a virtual function is introduced to decouple the motions of the floats. The energy conversion character of the double-float WEC is also evaluated. The investigation is carried out over a wide range of incident wave frequency. By analyzing the effects of the incident wave frequency, we derive the PTO's damping coefficient for the double-float WEC's capture width ratio and the relationships between the capture width ratio and the natural frequencies of the lower and upper floats. In addition, it is capable to modify the natural frequencies of the two floats by changing the stiffness coefficients of the PTO and mooring systems. We found that the natural frequencies of the device can directly influence the peak frequency of the capture width, which may provide an important reference for the design of WECs.展开更多
When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped...When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped in, the bulged section elongates at the expense of the unbulged section, until the entire balloon is bulged. The phenomenon is analogous to the liquid-to-vapor phase transition. Here we study the bulging transition in a dielectric elastomer tube as air is pumped into the balloon and a voltage is applied through the thickness of the membrane. We formulate the condition for coexistent budged and unbulged sections, and identify allowable states set by electrical breakdown and mechanical rupture. We find that the bulging transition dramatically amplifies electromechanical energy conversion. Energy converted in an electromechanical cycle consisting of unbulged and bulged states is thousands of times that in an electromechanical cycle consisting of only unbulged states.展开更多
The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodi...The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency.展开更多
High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This r...High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This review presents fundamental preparations,incidental characterizations,and typical structures of HEOs.The prospective applications of HEOs in various electrochemical aspects of electrocatalysis and energy conversion-storage are also summarized,including recent developments and the general trend of HEO structure design in the catalysis containing oxygen evolution reaction(OER)and oxygen reduction reaction(ORR),supercapacitors(SC),lithium-ion batteries(LIBs),solid oxide fuel cells(SOFCs),and so forth.Moreover,this review notes some apparent challenges and multiple opportunities for the use of HEOs in the wide field of energy to further guide the development of practical applications.The influence of entropy is significant,and high-entropy oxides are expected to drive the improvement of energy science and technology in the near future.展开更多
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device...Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.展开更多
Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highper...Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highperformance polymer-and ceramic-based dielectric composites,and emphases are placed on capacitive energy storage and harvesting,solid-state cooling,temperature stability,electromechanical energy interconversion,and high-power applications.Emerging fabrication techniques of dielectric composites such as 3D printing,electrospinning,and cold sintering are addressed,following by highlighted challenges and future research opportunities.The advantages and limitations of the typical theoretical calculation methods,such as finite-element,phase-field model,and machine learning methods,for designing high-performance dielectric composites are discussed.This review is concluded by providing a brief perspective on the future development of composite dielectrics toward energy and electronic devices.展开更多
Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worl...Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed.展开更多
In the context of the current serious problems related to energy demand and climate change,substantial progress has been made in developing a sustainable energy system.Electrochemical hydrogen-water conversion is an i...In the context of the current serious problems related to energy demand and climate change,substantial progress has been made in developing a sustainable energy system.Electrochemical hydrogen-water conversion is an ideal energy system that can produce fuels via sustainable,fossil-free pathways.However,the energy conversion efficiency of two functioning technologies in this energy system—namely,water electrolysis and the fuel cell—still has great scope for improvement.This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen-water energy system and discusses the key barriers in the hydrogen-and oxygen-involving reactions that occur on the catalyst surface.By means of the scaling relations between reactive intermediates and their apparent catalytic performance,this article summarizes the frameworks of the catalytic activity trends,providing insights into the design of highly active electrocatalysts for the involved reactions.A series of structural engineering methodologies(including nano architecture,facet engineering,polymorph engineering,amorphization,defect engineering,element doping,interface engineering,and alloying)and their applications based on catalytic performance are then introduced,w让h an emphasis on the rational guidance from previous theoretical and experimental studies.The key scientific problems in the electrochemical hydrogen-water conversion system are outlined,and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency.展开更多
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with...Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A4A2000934).
文摘The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.
基金Natural Science Foundation of Hebei ProvinceTangshan Talent Funding Project,Grant/Award Number:E2022209039+1 种基金Key Research Project of North China University of Science and Technology,Grant/Award Number:ZD-YG 202301Tangshan Talent Punding Project,Grant/Award Number:A202202007
文摘A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted.
基金supported by the National Natural Science Foundation of China(52161145409,21976116)SAFEA of China("Belt and Road”Innovative Talent Exchange Foreign Expert Project#2023041004L)(High-end Foreign Expert Project#G2023041021L)the Alexander-von-Humboldt Foundation of Germany(GroupLinkage Program)。
文摘Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.
基金the National Natural Science Foundation of China(Grant Nos.U21A20174 and 52001222)the Science and Technology Innovation Talent Team Project of Shanxi Province(Grant No.202304051001010)+3 种基金the Key National Scientific and Technological Co-operation Projects of Shanxi Province(Grant No.202104041101008)the Natural Science Foundation of Shanxi Province(Grant No.202303021221045)the Program for the Innovative Talents of Higher Education Institutions of Shanxi(PTIT)and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP)(Grant No.2022L036).
文摘Electrocatalytic water splitting for hydrogen production is an appealing strategy to reduce carbon emissions and generate renewable fuels.This promising process,however,is limited by its sluggish reaction kinetics and high-cost catalysts.The two-dimensional(2D)transition metal dichalcogenides(TMDCs)have presented great potential as electrocatalytic materials due to their tunable bandgaps,abundant defective active sites,and good chemical stability.Consequently,phase engineering,defect engineering and interface engineering have been adopted to manipulate the electronic structure of TMDCs for boosting their exceptional catalytic performance.Particularly,it is essential to clarify the local structure of catalytically active sites of TMDCs and their structural evolution in catalytic reactions using atomic resolution electron microscopy and the booming in situ technologies,which is beneficial for exploring the underlying reaction mechanism.In this review,the growth regulation,characterization,particularly atomic configurations of active sites in TMDCs are summarized.The significant role of electron microscopy in the understanding of the growth mechanism,the controlled synthesis and functional optimization of 2D TMDCs are discussed.This review will shed light on the design and synthesis of novel electrocatalysts with high performance,as well as prompt the application of advanced electron microscopy in the research of materials science.
基金supported by the National Research Foundation of Korea(Grant number:NRF-2023R1A2C2005864)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2024-00406240)+3 种基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022R1A2C1003853)supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.RS-2023-00217661)Technology Innovation Program(RS-2022-00155961,Development of a high-efficiency drying system for carbon reduction and high-loading electrodes by a flash light source)funded by the Ministry of Trade&,Energy(MOTIE,Korea)supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022R1A2C4001497).
文摘This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
基金The 3D simulation was carried out by the K computer at the RIKEN Advanced Institute for Computational Science through the HPCI Research project(hp140129,hp150123)supported by the National Natural Science Foundation of China under Grant Nos.42350710793,41874189 and 41821003。
文摘A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of particle-in-cell simulations in two-dimensional(2D)and three-dimensional(3D)systems.Our result indicates that in the 2D simulation,energy conversion in the SR is dominated by parallel components,with the main influencing factor being the parallel electric field,which is not consistent with the observation.However,a case that is similar to the observation is found in the 3D simulation,suggesting that the observation result may be attributed to the 3D characteristics.Our findings provide a potential explanation for the satellite observation.
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(52488201)the National Natural Science Foundation of China(52376209)+1 种基金the China Postdoctoral Science Foundation(2020T130503 and 2020M673386)the China Fundamental Research Funds for the Central Universities.
文摘Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability.
基金Project(51324744)supported by the National Natural Science Foundation of ChinaProject(71380100006)supported by the Innovation Foundation of Doctoral Student in Hunan Province,China
文摘Based on energy theory and tests of rocks with initial confining pressures of 10, 20 and 30 MPa under different unloading paths, the processes of strain energy conversion were investigated. The absorbing strain energy for axial compression, the dissipating strain energy for plastic deformation and cracks propagation, the expending strain energy for circumferential deformation, and the storing and releasing elastic strain energy were considered. Unloading paths included the condition of fixing axial pressure and unloading axial pressure, increasing axial pressure and unloading confining pressure, as well as unloading axial pressure and confining pressure simultaneously. Results show that expending strain energy for circumferential deformation has mainly evolved from absorbing strain energy for axial compression in three unloading paths during unloading processes. Dissipating strain energy is significantly increased only near the peak point. The effect of initial confining pressure on strain energy is significantly higher than that of unloading path. The strain energy is linearly increased with increasing initial confining pressure. The unloading path and initial confining pressure also have great influence on the energy dissipation. The conversion rate of strain energy in three paths is increased with increasing initial confining pressure, and the effect of initial confining pressure on conversion rate of strain energy is related with the unloading paths.
基金supported by the National Key Research and Development Program (no.2016YFA0202500)National Basic Research Program of China (2015CB932500)the Natural Scientific Foundation of China (nos.21306102 and 21422604)
文摘Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the Australian Research Council for the financial support through its DP and FF programsthe Australian Government for the financial support through the Australian Government Research Training Program ScholarshipThe financial support from National Science Foundation of China(No.513228201)
文摘Photocatalysis. which utilizes solar energy to trigger chemical reactions, is one of the most desirable solar-energy-conversion approaches. Graphitic carbon nitride (g-C3N4). as an attractive metal-free photocatalyst, has drawn worldwide research interest in the area of solar energy conversion due to its easy synthesis, earth-abundant nature, physicochemical stability and visible-light-responsive properties. Over the past ten years, g-C3N4 based photocatalysts have experienced intensive exploration, and great progress has been achieved. However, the solar conversion efficiency is still far from industrial applications due to the wide bandgap, severe charge recombination, and lack of surface active sites. Many strategies have been proposed to enhance the light absorption, reduce the recombination of charge carriers and accelerate the surface kinetics. This work makes a crucial review about the main contributions of various strategies to the light harvesting, charge separation and surface kinetics of g-C3N4 photocatalyst. Furthermore, the evaluation measurements for the enhanced light harvesting, reduced charge recombination and accelerated surface kinetics will be discussed. In addition, this review proposes future trends to enhance the photocatalytic performance of g-C3N4 photocatalyst for the solar energy conversion.
基金supported by National Key R&D Program of China (Nos 2018YFC1504803, 2018YFC1504806)Geological Hazard Prevention and Control Project for Follow-Up Work of the Three Gorges Project (Nos. 001212019CC60001,0001212018CC60008)
文摘The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results.
基金supported by the National Natural Science Foundation of China(51409066,51761135013)High Technology Ship Scientific Research Project from the Ministry of Industry and Information Technology of the People's Republic of China-Floating Security Platform Project(the second stage,201622)the Fundamental Research Fund for the Central University(HEUCFJ180104,HEUCFP1809)
文摘In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is modeled as a combination of a linear viscous damping and a linear spring. Using the frequency domain method, the optimal damping coefficient of the generator PTO system is derived to achieve the optimal conversion efficiency(capture width ratio).Based on the potential flow theory and the higher-order boundary element method(HOBEM), we constructed a threedimensional model of double-float WEC to study its hydrodynamic performance and response in the time domain. Only the heave motion of the two-body system is considered and a virtual function is introduced to decouple the motions of the floats. The energy conversion character of the double-float WEC is also evaluated. The investigation is carried out over a wide range of incident wave frequency. By analyzing the effects of the incident wave frequency, we derive the PTO's damping coefficient for the double-float WEC's capture width ratio and the relationships between the capture width ratio and the natural frequencies of the lower and upper floats. In addition, it is capable to modify the natural frequencies of the two floats by changing the stiffness coefficients of the PTO and mooring systems. We found that the natural frequencies of the device can directly influence the peak frequency of the capture width, which may provide an important reference for the design of WECs.
基金supported by ARO(W911NF-09-1-0476)DARPA (W911NF-10-1-0113)+2 种基金MRSECsupported by China Scholarship Council as a visiting scholar for two years at Harvard Universitythe Alexander von Humboldt Foundation for the Humboldt Award
文摘When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped in, the bulged section elongates at the expense of the unbulged section, until the entire balloon is bulged. The phenomenon is analogous to the liquid-to-vapor phase transition. Here we study the bulging transition in a dielectric elastomer tube as air is pumped into the balloon and a voltage is applied through the thickness of the membrane. We formulate the condition for coexistent budged and unbulged sections, and identify allowable states set by electrical breakdown and mechanical rupture. We find that the bulging transition dramatically amplifies electromechanical energy conversion. Energy converted in an electromechanical cycle consisting of unbulged and bulged states is thousands of times that in an electromechanical cycle consisting of only unbulged states.
基金financially supported by the National Natural Science Foundation of China(Grant No.51779104)the Natural Science Foundation of Fujian Province,China(Grant Nos.2016J01247 and 2016J01245)+1 种基金the New Century Talent Support Program of Fujian Province,China(Grant No.JA13170)the Foreign Cooperation Program of Fujian Province,China(Grant No.2016I010003)
文摘The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency.
基金The authors are thankful for the financial support from the Beijing Natural Science Foundation(No.3222050)the National Natural Science Foundation of China(Nos.22075304 and 52202324).
文摘High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This review presents fundamental preparations,incidental characterizations,and typical structures of HEOs.The prospective applications of HEOs in various electrochemical aspects of electrocatalysis and energy conversion-storage are also summarized,including recent developments and the general trend of HEO structure design in the catalysis containing oxygen evolution reaction(OER)and oxygen reduction reaction(ORR),supercapacitors(SC),lithium-ion batteries(LIBs),solid oxide fuel cells(SOFCs),and so forth.Moreover,this review notes some apparent challenges and multiple opportunities for the use of HEOs in the wide field of energy to further guide the development of practical applications.The influence of entropy is significant,and high-entropy oxides are expected to drive the improvement of energy science and technology in the near future.
基金This work was supported by Taishan Scholars Project Special Funds(tsqn201812083)Natural Science Foundation of Shandong Province(ZR2019YQ20,2019JMRH0410,ZR2019BB001)the National Natural Science Foundation of China(51972147,51902132,52022037).
文摘Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.
基金supported by the State Key Lab of Advanced Metals and Materials(No.2020-Z16)the Fundamental Research Funds for the Central Universities(USTB:No.06500135)+3 种基金Huimin Qiao thanks the National Research Foundation of Korea(No.2019R1I1A1A01063888)for financial supportFangping Zhuo would like to thank the Alexander von Humboldt Foundation for financial supportThe computing work was supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome EngineeringProf.Q.Zhang also acknowledges the financial support from the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,and Henan Key Laboratory of High-temperature Structural and Functional Materials,Henan University of Science and Technology(Grants No.HKDNM2019013).
文摘Dielectric composites boost the family of energy storage and conversion materials as they can take full advantage of both the matrix and filler.This review aims at summarizing the recent progress in developing highperformance polymer-and ceramic-based dielectric composites,and emphases are placed on capacitive energy storage and harvesting,solid-state cooling,temperature stability,electromechanical energy interconversion,and high-power applications.Emerging fabrication techniques of dielectric composites such as 3D printing,electrospinning,and cold sintering are addressed,following by highlighted challenges and future research opportunities.The advantages and limitations of the typical theoretical calculation methods,such as finite-element,phase-field model,and machine learning methods,for designing high-performance dielectric composites are discussed.This review is concluded by providing a brief perspective on the future development of composite dielectrics toward energy and electronic devices.
基金supported by the National Natural Science Foundation of China(Grants nos.11775155,51561135013,21603202)。
文摘Conversion of CO2 into CO using plasma processing powered by renewable energy is a promising method to convert intermittent sustainable electricity into storable chemical energy.Despite extensive research efforts worldwide,there is currently no process that achieves economically viable values for both CO2 conversion fraction and energy recovery efficiency simultaneously.Here we demonstrate that a process that utilizes the Boudouard reaction,CO^2++C→2 CO,driven by a thermal plasma allows both 95%CO2 conversion to CO and energy recovery efficiency of 70%,values far higher than seen so far.By comparing the conversion process with and without CO2 excitation by a plasma and by using optical emission spectroscopy we show that the improved performance is due to a novel mode of operation where CO2 is pyrolyzed into an active mixture of CO,O and O2 by an arc discharge which is then introduced into a fixed bed to interact with carbon material.In this way,the free oxygen in the mixture combusts with carbon to form CO,and residual plasma excited CO2 is reduced by carbon.In the overall process,the endothermic Boudouard reaction is partially replaced by an exothermic reaction,and the excess electric energy to produce CO2 plasma is reused in the carbon bed.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China(21576032 and 51772037)the Key Program of the National Natural Science Foundation of China(21436003)+1 种基金the Major Research Plan of the National Natural Science Foundation of China(91534205)the National Program on Key Basic Research Project of China(2016YFB0101202).
文摘In the context of the current serious problems related to energy demand and climate change,substantial progress has been made in developing a sustainable energy system.Electrochemical hydrogen-water conversion is an ideal energy system that can produce fuels via sustainable,fossil-free pathways.However,the energy conversion efficiency of two functioning technologies in this energy system—namely,water electrolysis and the fuel cell—still has great scope for improvement.This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen-water energy system and discusses the key barriers in the hydrogen-and oxygen-involving reactions that occur on the catalyst surface.By means of the scaling relations between reactive intermediates and their apparent catalytic performance,this article summarizes the frameworks of the catalytic activity trends,providing insights into the design of highly active electrocatalysts for the involved reactions.A series of structural engineering methodologies(including nano architecture,facet engineering,polymorph engineering,amorphization,defect engineering,element doping,interface engineering,and alloying)and their applications based on catalytic performance are then introduced,w让h an emphasis on the rational guidance from previous theoretical and experimental studies.The key scientific problems in the electrochemical hydrogen-water conversion system are outlined,and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency.
基金the National Natural Science Foundation of China(Nos.21774094,51702237,and 51973159)Science and Technology Commission of Shanghai Municipality(14DZ2261100)+1 种基金Shanghai Rising–Star Program(17QA1404300)the Youth Talent Support Program at Shanghai,the Fundamental Research Funds for the Central Universities(Tongji University).
文摘Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.