期刊文献+
共找到349篇文章
< 1 2 18 >
每页显示 20 50 100
Output Waveform Analysis of an Electro-hydraulic Vibrator Controlled by the Multiple Valves 被引量:10
1
作者 REN Yan RUAN Jian JIA Wen'ang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期186-197,共12页
The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vib... The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vibrator is difficult to be improved greatly due to fast insufficiently frequency response of the servo valve itself and limited compensation capability of the control structure in the vibrator system. In this paper, to realize high frequency vibration, an improved two-dimensional valve (here within defined as a 2D valve) as a main control component is adopted to the parallel connection with a servo valve to control the electro-hydraulic vibrator, Because the output waveforms of this electro-hydraulic vibrator are incapable to be verified through timely feedback as in the conventional electro-hydraulic servo system, the analysis to the output waveform becomes crucial to the design and control of the electro-hydraulic vibrator. The mathematical models of hydraulic actuation mechanism and the orifice area of the parallel valves connection are established first. And then the vibration process is divided into two sections in terms of the direction of the flow, the analytical expression of the excited waveform is solved. Based on relationships exist between working states and the control parameters the analytical results, the vibration boundary positions and the are derived. Finally an experimental system was built to validate the theoretical analysis. It is verified that this electro-hydraulic vibration system could achieve high working frequency, up to 2 000 Hz. The excited waveform is similar to the sinnsoidal waveform. And the ascent and decent slopes of the waveforms are somewhat asymmetrical. This asymmetry is not only caused by the change of the direction of the elastic force but also dependent on the bias position of the vibration. Consequentky the distortion of effective working waveform is less tha~ 10%. This electro-hydraulic vibrator controlled by the multiple valves could not only greatly enhance the working frequency but also precisely control the vibration characteristic variables such as waveform shape. 展开更多
关键词 2D valves hydraulic multiple-valve system electro-hydraulic vibrator excited waveform
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
2
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
High precise control method for a new type of Piezoelectric electro-hydraulic servo valve 被引量:2
3
作者 周淼磊 田彦涛 +1 位作者 高巍 杨志刚 《Journal of Central South University of Technology》 EI 2007年第6期832-837,共6页
A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of th... A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22% and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%. 展开更多
关键词 piezoelectric electro-hydraulic servo valve hysteresis nonlinearity Preisach model fuzzy control
下载PDF
Investigation of Semi-Active Hydro-Pneumatic Suspension for a Heavy Vehicle Based on Electro-Hydraulic Proportional Valve 被引量:2
4
作者 Wenchao Yue Shoucheng Li Xiaojun Zou 《World Journal of Engineering and Technology》 2017年第4期696-706,共11页
Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters accordin... Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters according to the complicated road environment of heavy vehicles to fulfill the requirements of the vehicle ride comfort. In this paper, a semi-active hydro-pneumatic suspension system based on the electro-hydraulic proportional valve control is proposed, and fuzzy control is used as the control strategy to adjust the?damping force of the semi-active hydro-pneumatic suspension. A 1/4?semi-active hydro-pneumatic suspension model is established, which is co-simulated with AMESim and MATLAB/Simulink. The co-simulation results show that the semi-active hydro-pneumatic suspension system can significantly reduce vibration of the vehicle body, and improve the suspension performance comparing with passive hydro-pneumatic suspension. 展开更多
关键词 Hydro-Pneumatic SUSPENSION SEMI-ACTIVE Control CO-SIMULATION electro-hydraulic Proportional valve
下载PDF
DYNAMIC CHARACTERISTICS OF ELECTRO-HYDRAULIC PROPORTIONAL PRESSURE-FLOW HYBRID VALVE
5
作者 FU Linjian QIU Minxiu SHAO Ancen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期62-68,共7页
The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to t... The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to the structure principles under the two different working conditions, the transfer functions under such conditions are derived. With the transfer functions, some structure elements that may affect its performance, are investigated, afterwards some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The conclusions can be used to instruct engineering applications and products designing. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works. 展开更多
关键词 electro-hydraulic pressure-flow hybrid valve Dynamic characteristics PQ valve
下载PDF
Simple Push-Type Wave Generating Method Using Digital Rotary Valve Control 被引量:6
6
作者 Yi Liu Jiafei Zheng +3 位作者 Ruiyin Song Qiaoning Xu Junhua Chen Fangping Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期221-231,共11页
The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rot... The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rotary valve control was proposed and different wave amplitudes were generated by the new method.After the mathematical model of the new method had been established,numerical analysis based on the linear wave theory was carried out by means of Matlab/Simulink software tools,and experiments were conducted on the push-type wave maker to ascertain the validity of the established model and the numerical simulation results.It shows that both experimental and theoretical results agree relatively well,and the plate motion frequency and amplitude of the push-type wave maker can be continuously adjusted and the various required regular waves can be obtained.Although the wave amplitude and length descends with the increasing of working frequency,the wave amplitude can be improved conveniently by setting the axial opening width of the valve and the oil supply pressure of system.The wave length remains unchanged with the axial opening width and the oil supply pressure change.The research indicates that different regular waves can be easily generated by the new method and the wave amplitude can be further improved in a certain plate motion frequency range. 展开更多
关键词 Push-type WAVE MAKER DIGITAL rotary valve CONTROL Mathematical modeling WAVE amplitude WAVE frequency
下载PDF
Research on improved active disturbance rejection control of continuous rotary motor electro-hydraulic servo system 被引量:6
7
作者 WANG Xiao-jing FENG Ya-ming SUN Yu-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3733-3743,共11页
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam... In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application. 展开更多
关键词 continuous rotary electro-hydraulic servo motor active disturbance rejection control(ADRC) fast tracking differentiator(TD) non-linear state error feedback(NLSEF) extended state observer(ESO) grey wolf algorithm
下载PDF
Delay Compensation Observer with Sliding Mode Controller for Rotary Electro-hydraulic Servo System 被引量:1
8
作者 ZAKARYA Omar KHALID Hussein +1 位作者 WANG Xingsong ORELAJA Olusyi Adwale 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期49-56,共8页
The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is requ... The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time. 展开更多
关键词 sliding mode controller rotary electro-hydraulic servo system delay compensating observer transport delay
下载PDF
Self-correcting wavelet neural network control of continuous rotary electro-hydraulic servo motor 被引量:2
9
作者 Wang Xiaojing Li Chunhui Peng Yiwen 《High Technology Letters》 EI CAS 2021年第1期26-37,共12页
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the... In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system. 展开更多
关键词 continuous rotary electro-hydraulic servo motor Pol-Ind friction model self correcting wavelet neural network(WNN) Adam optimization algorithm
下载PDF
Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller 被引量:1
10
作者 王晓晶 姜继海 李尚义 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期731-734,共4页
In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction ... In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor. 展开更多
关键词 continuous rotary electro-hydraulic servo motor repetitive control interference suppression
下载PDF
Numerical simulation and experimental study on the leakage of continuous rotary electro-hydraulic servo motor
11
作者 Wang Xiaojing Peng Yiwen Li Chunhui 《High Technology Letters》 EI CAS 2021年第3期272-281,共10页
In order to study the influence of inlet and outlet pressure difference and triangular buffer groove on the internal leakage of continuous rotary electro-hydraulic servo motor,the flow field model of motor with and wi... In order to study the influence of inlet and outlet pressure difference and triangular buffer groove on the internal leakage of continuous rotary electro-hydraulic servo motor,the flow field model of motor with and without triangular groove is established respectively.The mesh model is divided.The pressure distribution of the internal flow field under different pressure difference is analyzed by Fluent.Then,the gap leakage under different pressure difference is calculated,and the leakage curve is obtained.Finally,continuous rotary electro-hydraulic servo motor experimental system is built to conduct the internal leakage test,and the leakage under different pressure difference is measured and compared with the simulation results.The results show that the occurrence of leakage in the motor can be reduced by setting the triangular buffer groove on the flow plate,the simulation and experimental results are consistent.It can be concluded that the larger the pressure difference between the inlet and the outlet of the motor,the larger the gap leakage.The research lays foundation for the application of continuous rotary electro-hydraulic servo motor. 展开更多
关键词 continuous rotary electro-hydraulic servo motor internal leakage FLUENT triangular buffer groove
下载PDF
Research and Development of Electro‑hydraulic Control Valves Oriented to Industry 4.0:A Review 被引量:19
12
作者 Bing Xu Jun Shen +2 位作者 Shihao Liu Qi Su Junhui Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期5-24,共20页
Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace,which controls electro-hydraulic motion.With the development of automation,digital technology,and communication t... Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace,which controls electro-hydraulic motion.With the development of automation,digital technology,and communication technology,electro-hydraulic control valves are becoming more digital,integrated,and intelligent in order to meet the requirements of Industry 4.0.This paper reviews the state of the art development for electro-hydraulic control valves and their related technologies.This review paper considers three aspects of state acquisition through sensors or indirect acquisition technologies,control strategies along with digital controllers and novel valves,and online maintenance through data interaction and fault diagnosis.The main features and development trends of electro-hydraulic control valves oriented to Industry 4.0 are discussed. 展开更多
关键词 Hydraulic valves electro-hydraulic technology Sensor Control Digital hydraulic Fault diagnosis
下载PDF
RESEARCH ON THE PERFORMANCE OF NEW TYPE OF PROPORTIONAL PESSURE AND FLOW CONTROL VALVE 被引量:9
13
作者 Quan LongMa JianWang YongjinInstitute of Mechatronics,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期281-284,共4页
A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control... A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved. 展开更多
关键词 electro-hydraulic proportional control Proportional flow valve Proportionalpressure valve Pressure and flow compound control
下载PDF
Separate Control of High Frequency Electro-hydraulic Vibration Exciter 被引量:7
14
作者 JIA Wen'ang RUAN Jian REN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期293-302,共10页
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca... The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset. 展开更多
关键词 control valves electro-hydraulic system vibration exciter dynamics characteristics
下载PDF
Mechanism of electro-hydraulic exciter for new tamping device 被引量:6
15
作者 刘毅 龚国芳 +2 位作者 杨华勇 韩冬 杨学兰 《Journal of Central South University》 SCIE EI CAS 2014年第2期511-520,共10页
A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibrati... A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibration.A new spin valve was designed in order to fulfill dynamic state requirements of the oscillation cylinder.Parametric analysis was carried out by establishing mathematic model.Then,the relationships among the structure of valve port and the frequency,amplitude,output shock force of the cylinder were researched.An experimental device of the electrohydraulic exciter was established to validate the theoretical results.The signals were acquired by AVANT dynamic signal analyser of vibration.The results show that new tamping device can satisfy all kinds of complex working conditions with the flexible adjustment of frequency and amplitude. 展开更多
关键词 tamping device spin valve oscillation cylinder electro-hydraulic exciter variable damping parametric analysis
下载PDF
DYNAMIC CHARACTERISTICS OF LARGE FLOW RATING ELECTROHYDRAULIC PROPORTIONAL CARTRIDGE VALVE 被引量:10
16
作者 FU Linjian WEI Jianhua QIU Minxiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期57-62,共6页
A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer fimction of the valve... A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer fimction of the valve is derived. With the transfer function, some structure elements that may affect its performance are investigated. Through the numerical simulation and test study, some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works. The paper provides theoretical basis for engineering applications and series expanding design works 展开更多
关键词 Large flow rate electro-hydraulic proportional cartridge valve Dynamic characteristics
下载PDF
Waveforms analysis and optimization of new electro-hydraulic excitation technology 被引量:3
17
作者 韩冬 龚国芳 +2 位作者 杨华勇 刘毅 廖湘平 《Journal of Central South University》 SCIE EI CAS 2014年第8期3098-3106,共9页
A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation ... A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure. 展开更多
关键词 rotary valve micro-displacement double-functioned hydraulic cylinder two-throttle phenomenon revised flow areamodel saturation drift motion
下载PDF
Study on Valve Management of DEH for Steam Turbine 被引量:2
18
作者 Changjie Yin Jizhen Liu 《Energy and Power Engineering》 2013年第4期319-323,共5页
Valve management is one of the major functions of DEH for steam turbine. It has an important practical significance for the security and economy of the steam turbine. This paper starts from the valve configuration fig... Valve management is one of the major functions of DEH for steam turbine. It has an important practical significance for the security and economy of the steam turbine. This paper starts from the valve configuration figure of the domestic-type 300 MW steam turbine, and then makes a simple comparison between the two types of valve governing modes. In order to realize the valve control, the structure of control system has been established, in which the roles of the mathematical functions are discussed. On the basis of the experiment of valve flow characteristic, this article carries out a quantitative study on the functions of the valve management and the parameter tuning method. Through a serious corrections, the sequence valve flow characteristic curve is obtained, which can provide significant guidance on the research of valve management of the similar steam turbines. 展开更多
关键词 valve Management Steam TURBINE Digital electro-hydraulic Control System valve Flow CHARACTERISTIC
下载PDF
Vibration Frequency Characteristic Study of Two-stage Excitation Valve Used in Vibration Experiment System 被引量:1
19
作者 Yongping WU Chengwei XIONG +2 位作者 Yi LIU Jiafei ZHENG Mingxuan ZOU 《Mechanical Engineering Science》 2020年第1期30-35,共6页
To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system,the two-stage excitation valve is presented,and a mathematical model of two-stage excitation valve is established after... To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system,the two-stage excitation valve is presented,and a mathematical model of two-stage excitation valve is established after analyzing the working principle of two-stage excitation valve,then the influence of relevant parameters on the displacement of main spool of two-stage excitation valve is studied by using Matlab/Simulink to calculate and analyze.The results show that the displacement of main spool will be smaller with bigger diameter and more secondary valve ports.When the reversing frequency is higher and the oil supply pressure is lower as well as the axial guide width of valve ports is smaller,the maximum displacement of main spool is smaller.The new two-stage excitation valve is easy to adjust reversing frequency and flow.The high frequency can be achieved by improving the rotation speed of servo motor and adding the number of secondary valve ports;the large flow can be realized by increasing the axial guide width of secondary valve ports and oil supply pressure.The result of this study is of guiding significance for designing the rotary valve for the achievement of higher reversing frequency and larger flow. 展开更多
关键词 two-stage excitation valve rotary valve control mathematical modelling numerical analysis
下载PDF
Refined modeling and experimental verification of a torque motor for an electro-hydraulic servo valve 被引量:1
20
作者 Zhichuang CHEN Shenghong GE +2 位作者 Yulei JIANG Wenhao CHENG Yuchuan ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期302-317,共16页
The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps... The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps between the upper or lower yoke and the armature,the fringing effect at the limiting holes,and the nonlinear permeability of soft magnetic material.Based on the refined model,the influences of various factors on the calculation accuracy of the magnetic flux at the pole surfaces of the armature and the output torque are investigated.For verifying the validity of the refined model,a Finite Element Analysis(FEA)of the PMTM is conducted,and a test platform is constructed.Compared with existing models,the refined model can better reveal the intrinsic mechanism of the PMTM,and its calculations are more consistent with the FEA results.The experimental results of the armature deflection displacement show that the refined model can accurately describe the output characteristics of the PMTM. 展开更多
关键词 Calculation accuracy electro-hydraulic servo valve Experimental verification Finite element analysis Refined model Torque motor
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部