期刊文献+
共找到15,996篇文章
< 1 2 250 >
每页显示 20 50 100
New Method to Improve Dynamic Stiffness of Electro-hydraulic Servo Systems 被引量:9
1
作者 BAI Yanhong QUAN Long 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期997-1005,共9页
Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so... Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems. 展开更多
关键词 electro-hydraulic servo system flow feedforward compensation dynamic load stiffness double-valve actuation
下载PDF
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
2
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
下载PDF
ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD 被引量:1
3
作者 DongLonglei YanGuirong LiRonglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期237-242,共6页
The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure.... The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure. The mechanical characteristics of the slide-valveand the dual nozzle flapper valve are studied, and it is found that the centrifuge field can notonly increase the driving force or moment of the function units, but also decrease the stability ofthe components. Finally by applying Gauss minimum constraint principle, the dynamic model of theelectro-hydraulic vibrator in the centrifuge field is established, and the mechanical restriction ofthe system is also presented. The study will be helpful for the realization of the combinedvibration and centrifuge test system. 展开更多
关键词 electro-hydraulic servo system Centrifuge field Mechanical characteristics
下载PDF
Delay Compensation Observer with Sliding Mode Controller for Rotary Electro-hydraulic Servo System 被引量:1
4
作者 ZAKARYA Omar KHALID Hussein +1 位作者 WANG Xingsong ORELAJA Olusyi Adwale 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期49-56,共8页
The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is requ... The hip’s lower limb exoskeleton essential and most important function is to support human’s payload as well as to enhance and assist human’s motion. It utilizes an electro-hydraulic servo manipulator which is required to achieve precise trajectory tracking and positioning operations. Nevertheless,these tasks require precise and robust control,which is very difficult to attain due to the inherent nonlinear dynamic behavior of the electro-hydraulic system caused by flow-pressure characteristics and fluid volume control variations of the servo valve. The sliding mode controller(SMC)is a widely used nonlinear robust controller,yet uncertainties and delay in the output degrade the closed-loop system performance and cause system instability. This work proposes a robust controller scheme that counts for the output delay and the inherent parameter uncertainties. Namely,a sliding mode controller enhanced by time-delay compensating observer for a typical electro-hydraulic servo system is adapted. SMC is utilized for its robustness against servo system parameters’ uncertainty whereas a time-delay observer estimates the variable states of the controller(velocity and acceleration). The main contribution of this paper is improving on the closed loop performance of the electro hydraulic servo system and mitigating the delay time effects. Simulation results prove the robustness of this controller,which forces the position to track the desired path regardless of the changes of the amount of transport delay of the system’s states. The performance of the proposed controller is validated by repeating the simulation analysis while varying the amount of delay time. 展开更多
关键词 sliding mode controller rotary electro-hydraulic servo system delay compensating observer transport delay
下载PDF
Coordinating optimization-based sliding mode variable structure control for electro-hydraulic servo system
5
作者 Yong YANG An LUO Hua HAN 《控制理论与应用(英文版)》 EI 2006年第2期168-174,共7页
A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance i... A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC. 展开更多
关键词 Sliding mode variable structure control(SMVSC) Varying boundary layer Chattering reduction Steady-state performance Coordinating optimization(CO) electro-hydraulic servo system (EHSS)
下载PDF
Fuzzy iterative learning control of electro-hydraulic servo system for SRM direct-drive volume control hydraulic press 被引量:18
6
作者 郑建明 赵升吨 魏树国 《Journal of Central South University》 SCIE EI CAS 2010年第2期316-322,共7页
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no... A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only. 展开更多
关键词 hydraulic press volume control electro-hydraulic servo iterative learning control fuzzy control
下载PDF
Research on improved active disturbance rejection control of continuous rotary motor electro-hydraulic servo system 被引量:5
7
作者 WANG Xiao-jing FENG Ya-ming SUN Yu-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3733-3743,共11页
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam... In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application. 展开更多
关键词 continuous rotary electro-hydraulic servo motor active disturbance rejection control(ADRC) fast tracking differentiator(TD) non-linear state error feedback(NLSEF) extended state observer(ESO) grey wolf algorithm
下载PDF
Continuous rotary motor electro-hydraulic servo system based on the improved repetitive controller 被引量:1
8
作者 王晓晶 姜继海 李尚义 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期731-734,共4页
In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction ... In order to suppress the periodic interference of the continuous rotary electro-hydraulic servo motor,this paper makes the motor tracking the periodic signals with high accuracy,and improves the influence of friction interference to the performance of continuous rotary electro-hydraulic servo motor.The mathematic model of the electro-hydraulic position servo system of the continuous rotary motor was established,and the compound control method was adopted based on the repetitive control,feed forward and PID to suppress the friction interference.Through the simulation,the result confirms that the compound control method decreases the tracking error of the system,increases the robust performance of the system and improves the performance of the continuous rotary electro-hydraulic servo motor. 展开更多
关键词 continuous rotary electro-hydraulic servo motor repetitive control interference suppression
下载PDF
Amplitude phase control for electro-hydraulic servo system based on normalized least-mean-square adaptive filtering algorithm 被引量:4
9
作者 姚建均 富威 +1 位作者 胡胜海 韩俊伟 《Journal of Central South University》 SCIE EI CAS 2011年第3期755-759,共5页
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit... The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision. 展开更多
关键词 amplitude attenuation phase delay normalized least-mean-square adaptive filtering algorithm tracking performance electro- hydraulic servo system
下载PDF
Output feedback control and parameters influence analysis of active suspension electro-hydraulic servo actuator
10
作者 张伟 ZHAO Dingxuan GONG Mingde 《High Technology Letters》 EI CAS 2023年第2期159-165,共7页
The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordin... The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters. 展开更多
关键词 active suspension NONLINEAR hydraulic servo actuator output feedback
下载PDF
PID Controller Optimization by GA and Its Performances on the Electro-hydraulic Servo Control System 被引量:22
11
作者 Karam M. Elbayomy 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期378-384,共7页
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf... A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller. 展开更多
关键词 PID controller electro-hydraulic servo control system genetic controller GA
下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
12
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
下载PDF
Adaptive Robust Dead-Zone Compensation Control of Electro-Hydraulic Servo Systems with Load Disturbance Rejection 被引量:15
13
作者 HE Yudong WANG Junzheng HAO Renjian 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第2期341-359,共19页
A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is se... A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated. 展开更多
关键词 Adaptive robust control dead-zone servo systems tuning method. compensation disturbance rejection electro-hydraulic
原文传递
High precise control method for a new type of Piezoelectric electro-hydraulic servo valve 被引量:2
14
作者 周淼磊 田彦涛 +1 位作者 高巍 杨志刚 《Journal of Central South University of Technology》 EI 2007年第6期832-837,共6页
A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of th... A new type of piezoelectric electro-hydraulic servo valve system was proposed. And then multilayer piezoelectric actuator based on new piezoelectric ceramic material was used as the electricity-machine converter of the proposed piezoelectric electro-hydraulic servo valve. The proposed piezoelectric electro-hydraulic servo valve has ascendant performance compared with conventional ones. But the system is of high nonlinearity and uncertainty, it cannot achieve favorable control performance by conventional control method. To develop an efficient way to control piezoelectric electro-hydraulic servo valve system, a high-precise fuzzy control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with Preisach hysteresis nonlinear model and a feedback loop with high-precise fuzzy control. Experimental results show that the hysteresis loop and the maximum output hysteresis by the PID control method are 4.22% and 2.11 μm, respectively; the hysteresis loop and the maximum output hysteresis by the proposed control method respectively are 0.74% and 0.37 μm, respectively; the maximum tracking error by the PID control method for sine wave reference signal is about 5.02%, the maximum tracking error by the proposed control method for sine wave reference signal is about 0.85%. 展开更多
关键词 piezoelectric electro-hydraulic servo valve hysteresis nonlinearity Preisach model fuzzy control
下载PDF
Self-correcting wavelet neural network control of continuous rotary electro-hydraulic servo motor 被引量:2
15
作者 Wang Xiaojing Li Chunhui Peng Yiwen 《High Technology Letters》 EI CAS 2021年第1期26-37,共12页
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the... In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system. 展开更多
关键词 continuous rotary electro-hydraulic servo motor Pol-Ind friction model self correcting wavelet neural network(WNN) Adam optimization algorithm
下载PDF
Modeling,Simulation and Experiment of Electro-hydraulic Screw Down Servo System of Seamless Tube Rolling Mill 被引量:4
16
作者 XU Xiaoqing QUAN Long +1 位作者 LI Bin GUO Jibao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期113-120,共8页
Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious... Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious disadvantage that the roller would often be locked when it is overloaded.For the purpose of designing the first set of domestic twin-roller,four-cylinder and six-framework electro-hydraulic HSDS of seamless tube rolling mill,an experiment system that can simulate the process of seamless tube rolling is constructed.A digital simulation model of the experiment system is built with AMESim software and validated by comparing the simulation results with experiment results.The sudden load response of the screw piston position is studied with the built model and the experiment system.To improve the HSDS's positioning accuracy with large load,a hybrid control scheme of combining load disturbance feedforward compensation(LDFC) method based on servo valve's pressure-stroke feature and anti-saturation integral control(ASIC) is proposed.Both results of simulation and experiment indicate that the transient response time of the single-roller HSDS with the proposed scheme decreases from 0.65 s to less than 0.2 s without static error.To improve the system dynamic stiffness and production qualified rate,a flow rate feedforward compensation(FFC) control strategy based on oil compressibility to dynamic position error is proposed.This FFC strategy is validated with experiments in which the transient error caused by sudden load is reduced to less than 25% of that without FFC.By extending the simulation model to HSDS of a twin-roller,four-cylinder rolling mill,analyzing the mill deformation,and applying the LDFC,ASIC and FFC to the HSDS,the dynamic performance and positioning accuracy of compensated multi-roller HSDS at biting moment are predicted.The research results provide a theoretical and experimental basis for the design of HSDS of seamless steel tube rolling mill. 展开更多
关键词 tube rolling mill servo system digital simulation load stiffness
下载PDF
Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator 被引量:5
17
作者 曹健 许宏光 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期86-89,共4页
The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was prop... The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experimentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators. 展开更多
关键词 electro-hydraulic servomotor frictional model frictional compensation experimental investigating
下载PDF
PI-type Iterative Learning Control for Nonlinear Electro-hydraulic Servo Vibrating System 被引量:3
18
作者 LUO Xiaohui ZHU Yuquan HU Junhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期451-455,共5页
For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of tradition... For the electro-hydraulic servo vibrating system(ESVS) with the characteristics of non-linearity and repeating motion, a novel method, PI-type iterative learning control(ILC), is proposed on the basis of traditional PID control. By using memory ability of computer, the method keeps last time's tracking error of the system and then applies the error information to the next time's control process. At the same time, a forgetting factor and a D-type learning law of feedforward fuzzy-inferring referenced displacement error under the optimal objective are employed to enhance the systemic robustness and tracking accuracy. The results of simulation and test reveal that the algorithm has a trait of high repeating precision, and could restrain the influence of nonlinear factors like leaking, external disturbance, aerated oil, etc. Compared with traditional PID control, it could better meet the requirement of nonlinear electro -hydraulic servo vibrating system. 展开更多
关键词 electro-hydraulic vibrating system PI iterative learning forgetting factor fuzzy inference
下载PDF
Fuzzy Feedback Control for Electro-Hydraulic Actuators
19
作者 Tan Nguyen Van Huy Q.Tran +2 位作者 Vinh Xuan Ha Cheolkeun Ha Phu Huynh Minh 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2441-2456,共16页
Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely co... Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively. 展开更多
关键词 electro-hydraulic actuator FUZZY PID feedback control
下载PDF
Analysis of nonlinearities and effects in direct drive electro-hydraulic position servo system 被引量:2
20
作者 王洪杰 季天晶 +1 位作者 毛新涛 刘全忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期6-10,共5页
The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce th... The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce the popular nonlinearities in the electro-hydraulic system and analyse the effect of nonlinearities in direct drive electro-hydraulic position servo system by means of simulation research. Some valuable conclusions are given. 展开更多
关键词 direct drive electro-hydraulic system NONLINEARITIES EFFECT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部