This paper analyzes the eddy currents and the electro-magnetic forces on the lower hybrid wave (LHW) launching antenna on the superconducting Tohamak HT-7 by using a finite element circult method. A new iterative algo...This paper analyzes the eddy currents and the electro-magnetic forces on the lower hybrid wave (LHW) launching antenna on the superconducting Tohamak HT-7 by using a finite element circult method. A new iterative algorithm is developed to analyze the coupled magnetic fields Which are very difficult to be calculated. The method and results obtained are helpful to study the eddy currents and electro-magnetic forces on metal plates which are placed in a rather complicated electro-magnetic environment.展开更多
The Okubo-Weiss function is correlated with the fluid particle compression, deformation and vorticity, which provides a simple way to characterize different regions of a flow-field. In the present paper, it shows math...The Okubo-Weiss function is correlated with the fluid particle compression, deformation and vorticity, which provides a simple way to characterize different regions of a flow-field. In the present paper, it shows mathematically that the global integration of Okubo-Weiss function is always equal to zero for a two dimensional incompressible flow with no-slip boundaries. To validate the conclusion, a flow passing a circular cylinder con- trolled by the electromagnetic force is calculated numerically as an example. Distributions of global enstrophy, total squared strain and Okubo-Weiss function in the controlled flow field are discussed. The influence of Lorentz force on the distribution is analyzed.展开更多
文摘This paper analyzes the eddy currents and the electro-magnetic forces on the lower hybrid wave (LHW) launching antenna on the superconducting Tohamak HT-7 by using a finite element circult method. A new iterative algorithm is developed to analyze the coupled magnetic fields Which are very difficult to be calculated. The method and results obtained are helpful to study the eddy currents and electro-magnetic forces on metal plates which are placed in a rather complicated electro-magnetic environment.
文摘The Okubo-Weiss function is correlated with the fluid particle compression, deformation and vorticity, which provides a simple way to characterize different regions of a flow-field. In the present paper, it shows mathematically that the global integration of Okubo-Weiss function is always equal to zero for a two dimensional incompressible flow with no-slip boundaries. To validate the conclusion, a flow passing a circular cylinder con- trolled by the electromagnetic force is calculated numerically as an example. Distributions of global enstrophy, total squared strain and Okubo-Weiss function in the controlled flow field are discussed. The influence of Lorentz force on the distribution is analyzed.