The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling E...The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.展开更多
In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research gr...In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.展开更多
The dynamic performance of the coupling shaft system in a carpet tufting machine is the most critical factor affecting the carpet tufting machine's efficiency,and the product quality of the tufted carpet. To deter...The dynamic performance of the coupling shaft system in a carpet tufting machine is the most critical factor affecting the carpet tufting machine's efficiency,and the product quality of the tufted carpet. To determine how to avoid resonance produced by the coupling shaft system's vibration during the weaving process,the dynamic performance of a coupling shaft system in a carpet tufting machine was analyzed. Focusing on a DHGN801D-400 carpet tufting machine,a dynamic model of coupling shaft system was established by utilizing transfer matrix methodology. On the basis of this model,the natural frequencies and mode shapes of the coupling shaft system were obtained through simulations. The correctness of the theoretical model and the dynamic performance of the coupling shaft system were validated by experiments. The first order natural frequency of the coupling shaft system was close to 600 r / min. A conclusion can thus be drawn that operating the carpet tufting machine near this speed should be avoided as much as possible.展开更多
This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. In this method, an element free Galerkin (EFG) formulation, an enriched...This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. In this method, an element free Galerkin (EFG) formulation, an enriched basic function and some special shape functions that contain discontinuous derivatives are employed. Based on the moving least squares (MLS) interpolation approach, the EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method can yield an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. In another example studying a ceramic multilayer actuator, the proposed model was found to be accurate in the simulation of stress and electric field concentrations arround the abrupt end of an internal electrode.展开更多
The dynamic simulation is presented for an axial moving flexible rotating shafts, which have large rigid motions and small elastic deformation. The effects of the axial inertia, shear deformation, rotating inertia, gy...The dynamic simulation is presented for an axial moving flexible rotating shafts, which have large rigid motions and small elastic deformation. The effects of the axial inertia, shear deformation, rotating inertia, gyroscopic moment, and dynamic unbalance are considered based on the Timoshenko rotating shaft theory. The equations of motion and boundary conditions are derived by Hamilton principle, and the solution is obtained by using the perturbation approach and assuming mode method. This study confirms that the influence of the axial rigid motion, shear deformation, slenderness ratio and rotating speed on the dynamic behavior of Timoshenko rotating shaft is evident, especially to a high-angular velocity rotor.展开更多
Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions ...Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.展开更多
The torsional oscillation characteristics on the bending and torsioh coupled vibration of rotary shaft system were investigated using the elasto-dynamic theory and other mathematic methods, such as difference approach...The torsional oscillation characteristics on the bending and torsioh coupled vibration of rotary shaft system were investigated using the elasto-dynamic theory and other mathematic methods, such as difference approach, Fourier transform, and wavelet transform. It is concluded that mass eccentricity and other exciting modalities affect the bending and torsion coupled vibration of rotary shafts. Torsional vibration caused by bending vibration features linearity along with the change of amplitude of bending vibration. Meanwhile, energy spectrum concentrates on high frequency area with the wavelet analysis.展开更多
In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified versio...In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified version of the Jeffcott rotor model.The equation of motion describing the harmonic vibrations of the system was obtained using the Euler-Lagrange equations for the associated energy functional.Experiments considering different rotation speeds and axial loads acting on the propulsion shaft system were performed to verify the numerical model.The effects of system parameters such as shaft length and diameter,stiffness and damping coefficients,and cross-section eccentricity were also studied.The cross-section eccentricity increased the displacement response,yet coupled vibrations were not initially observed.With the increase in the eccentricity,the interaction between two vibration modes became apparent,and the agreement between numerical predictions and experimental measurements improved.Given the results,the modified version of the Jeffcott rotor model can represent the coupled torsional-transverse vibration of propulsion shaft systems.展开更多
Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring ...Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring and fault diagnosis.Dynamic modelling can study the mechanism under different faults and provide theoretical foundation for fault detection.However,current commonly used gear dynamic model usually neglects the influence of bearing and shaft,resulting in incomplete understanding of gearbox fault diagnosis especially under the effect of local defects on gear and shaft.To address this problem,an improved gear-shaft-bearing-housing dynamic model is proposed to reveal the vibration mechanism and responses considering shaft whirling and gear local defects.Firstly,an eighteen degree-of-freedom gearbox dynamic model is proposed,taking into account the interaction among gear,bearing and shaft.Secondly,the dynamic model is iteratively solved.Then,vibration responses are expounded and analysed considering gear spalling and shaft crack.Numerical results show that the gear mesh frequency and its harmonics have higher amplitude through the spectrum.Vibration RMS and the shaft rotating frequency increase with the spalling size and shaft crack angle in general.An experiment is designed to verify the rationality of the proposed gearbox model.Lastly,comprehensive analysis under different spalling size and shaft crack angle are analysed.Results show that when spalling size and crack angle are larger,RMS and the amplitude of shaft rotating frequency will not increase linearly.The dynamic model can accurately simulate the vibration of gear transmission system,which is helpful for gearbox fault diagnosis.展开更多
The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The beh...The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure.展开更多
松耦合变压器是电磁感应耦合式无线电能传输(inductively coupled power transfer,ICPT)系统中实现电能传输的重要设备。然而,松耦合变压器输出功率小、传输效率低的问题极大限制了其推广应用。提出了一种三端轴式松耦合变压器结构,分...松耦合变压器是电磁感应耦合式无线电能传输(inductively coupled power transfer,ICPT)系统中实现电能传输的重要设备。然而,松耦合变压器输出功率小、传输效率低的问题极大限制了其推广应用。提出了一种三端轴式松耦合变压器结构,分别针对该新型变压器相邻线圈对同名端同向和反向两种情况建立数学模型;然后对LCC-S补偿方式下基于三端轴式松耦合变压器的ICPT系统存在的频率分裂现象进行分析,通过仿真验证了三端轴式松耦合变压器可通过不同线圈对间的互感来提升系统的传输特性,并对同名端同向和同名端反向两种情况的输出功率和传输效率进行对比;最后通过实物实验证实了基于三端轴式松耦合变压器的ICPT系统能够提高输出功率和传输效率,同名端同向时传输效率较高,提高了16.4%;同名端反向时输出功率较高,提高了33.2%。展开更多
基金supported by the National Natural Science Foundation of China(51979130,11847009)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(22KJB580005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX221961)。
文摘The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC)nanobeam with “spring-mass” resonators periodically attached to epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with the widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics,“spring-mass” resonator, nonlocal effect and different geometric parameters on the first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.
基金The project supported by the 973 Program (G1999033108)the National Natural Science Foundation of China (10125211)
文摘In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.
基金National Natural Science Foundation of China(No.51175075)the Research and Innovation Project of Shanghai Municipal Education Commission,China(No.15ZZ034)
文摘The dynamic performance of the coupling shaft system in a carpet tufting machine is the most critical factor affecting the carpet tufting machine's efficiency,and the product quality of the tufted carpet. To determine how to avoid resonance produced by the coupling shaft system's vibration during the weaving process,the dynamic performance of a coupling shaft system in a carpet tufting machine was analyzed. Focusing on a DHGN801D-400 carpet tufting machine,a dynamic model of coupling shaft system was established by utilizing transfer matrix methodology. On the basis of this model,the natural frequencies and mode shapes of the coupling shaft system were obtained through simulations. The correctness of the theoretical model and the dynamic performance of the coupling shaft system were validated by experiments. The first order natural frequency of the coupling shaft system was close to 600 r / min. A conclusion can thus be drawn that operating the carpet tufting machine near this speed should be avoided as much as possible.
基金supported by the National Natural Science Foundation of China(10025209,10132010,and 90208002)the Research Grants Council of the Hong Kong Special Administrative Region,China(HKU 7203/03E).
文摘This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. In this method, an element free Galerkin (EFG) formulation, an enriched basic function and some special shape functions that contain discontinuous derivatives are employed. Based on the moving least squares (MLS) interpolation approach, the EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method can yield an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. In another example studying a ceramic multilayer actuator, the proposed model was found to be accurate in the simulation of stress and electric field concentrations arround the abrupt end of an internal electrode.
文摘The dynamic simulation is presented for an axial moving flexible rotating shafts, which have large rigid motions and small elastic deformation. The effects of the axial inertia, shear deformation, rotating inertia, gyroscopic moment, and dynamic unbalance are considered based on the Timoshenko rotating shaft theory. The equations of motion and boundary conditions are derived by Hamilton principle, and the solution is obtained by using the perturbation approach and assuming mode method. This study confirms that the influence of the axial rigid motion, shear deformation, slenderness ratio and rotating speed on the dynamic behavior of Timoshenko rotating shaft is evident, especially to a high-angular velocity rotor.
基金Supported by National Natural Science Foundation of China(Grant No.51605243)National Key Science and Technology Projects of China(Grant No.2014ZX04002041)1-class General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2016M590094)
文摘Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.
基金SUPPORTED BY NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA( NO. 50475112)NATURAL SCIENCE FOUNDATION OF TIANJIN (NO. 043601411).
文摘The torsional oscillation characteristics on the bending and torsioh coupled vibration of rotary shaft system were investigated using the elasto-dynamic theory and other mathematic methods, such as difference approach, Fourier transform, and wavelet transform. It is concluded that mass eccentricity and other exciting modalities affect the bending and torsion coupled vibration of rotary shafts. Torsional vibration caused by bending vibration features linearity along with the change of amplitude of bending vibration. Meanwhile, energy spectrum concentrates on high frequency area with the wavelet analysis.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)2214-A International Doctoral Research Fellowship Programmewhile experiments were performed at the Wuhan University of Technology。
文摘In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified version of the Jeffcott rotor model.The equation of motion describing the harmonic vibrations of the system was obtained using the Euler-Lagrange equations for the associated energy functional.Experiments considering different rotation speeds and axial loads acting on the propulsion shaft system were performed to verify the numerical model.The effects of system parameters such as shaft length and diameter,stiffness and damping coefficients,and cross-section eccentricity were also studied.The cross-section eccentricity increased the displacement response,yet coupled vibrations were not initially observed.With the increase in the eccentricity,the interaction between two vibration modes became apparent,and the agreement between numerical predictions and experimental measurements improved.Given the results,the modified version of the Jeffcott rotor model can represent the coupled torsional-transverse vibration of propulsion shaft systems.
基金supported by National Key R&D Program of China (No.2022YFB3303600)the Fundamental Research Funds for the Central Universities (No.2022CDJKYJH048).
文摘Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring and fault diagnosis.Dynamic modelling can study the mechanism under different faults and provide theoretical foundation for fault detection.However,current commonly used gear dynamic model usually neglects the influence of bearing and shaft,resulting in incomplete understanding of gearbox fault diagnosis especially under the effect of local defects on gear and shaft.To address this problem,an improved gear-shaft-bearing-housing dynamic model is proposed to reveal the vibration mechanism and responses considering shaft whirling and gear local defects.Firstly,an eighteen degree-of-freedom gearbox dynamic model is proposed,taking into account the interaction among gear,bearing and shaft.Secondly,the dynamic model is iteratively solved.Then,vibration responses are expounded and analysed considering gear spalling and shaft crack.Numerical results show that the gear mesh frequency and its harmonics have higher amplitude through the spectrum.Vibration RMS and the shaft rotating frequency increase with the spalling size and shaft crack angle in general.An experiment is designed to verify the rationality of the proposed gearbox model.Lastly,comprehensive analysis under different spalling size and shaft crack angle are analysed.Results show that when spalling size and crack angle are larger,RMS and the amplitude of shaft rotating frequency will not increase linearly.The dynamic model can accurately simulate the vibration of gear transmission system,which is helpful for gearbox fault diagnosis.
文摘The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure.
文摘松耦合变压器是电磁感应耦合式无线电能传输(inductively coupled power transfer,ICPT)系统中实现电能传输的重要设备。然而,松耦合变压器输出功率小、传输效率低的问题极大限制了其推广应用。提出了一种三端轴式松耦合变压器结构,分别针对该新型变压器相邻线圈对同名端同向和反向两种情况建立数学模型;然后对LCC-S补偿方式下基于三端轴式松耦合变压器的ICPT系统存在的频率分裂现象进行分析,通过仿真验证了三端轴式松耦合变压器可通过不同线圈对间的互感来提升系统的传输特性,并对同名端同向和同名端反向两种情况的输出功率和传输效率进行对比;最后通过实物实验证实了基于三端轴式松耦合变压器的ICPT系统能够提高输出功率和传输效率,同名端同向时传输效率较高,提高了16.4%;同名端反向时输出功率较高,提高了33.2%。