Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative bra...In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.展开更多
This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor ...This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.展开更多
Hydraulic hybrid vehicles (HHV) with secondary regulation technology has the potential of improving fuel economy by operating the engine in the optimum efficiency range and making use of regenerative braking. Hydros...Hydraulic hybrid vehicles (HHV) with secondary regulation technology has the potential of improving fuel economy by operating the engine in the optimum efficiency range and making use of regenerative braking. Hydrostatic transmission technology has the advantage of higher power density and the ability to accept the high rates and high frequencies of charging and discharging, both of which are not favorable for batteries, but the lower energy density requires special power matching design and control strategy to coordinate all the powertrain components in an optimal manner. A multi-objective optimization method is proposed to distinguish the components size values of HHV by considering the requirements of driving cycles and technology aspects. The regenerative braking strategy and energy control strategy based on the optimized HHV is proposed to recovery the braking energy and distribute the regenerated braking energy. Simulation results show that by taking the optimized configuration of HHV, adopting the regenerative braking strategy and energy control strategy are helpful to improve the system efficiency and fuel economy of HHV under urban driving cycles.展开更多
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
Walking assistance can be realized by active and passive robotic walkers when their users walk on even roads.However,fast signal processing and real-time control are necessary for active robotic walkers when the users...Walking assistance can be realized by active and passive robotic walkers when their users walk on even roads.However,fast signal processing and real-time control are necessary for active robotic walkers when the users walk on slopes,while assistive forces cannot be provided by passive robotic walkers when the users walk uphill.A robotic walker with an active-passive hybrid actuator(APHA)was developed in this study.The APHA,which consists of a rotary magnetorheological(MR)brake and a DC motor,can provide mobility assistance to users walking both uphill and downhill via the cooperative operation of the MR brake and DC motor.The rotary MR brake was designed with a T-shaped configuration,and the system was optimized to minimize the brake volume.Prototypes of the APHA and robotic walker were constructed.A control algorithm for the robotic walker was developed based on the characteristics of the APHA and the structure of the robotic walker.The mechanical properties of the APHA were characterized,and experiments were conducted to evaluate the mobility assistance supplied by the robotic walker on different roads.The results show that the APHA can meet the requirements of the robotic walker,and suitable assistive forces can be provided by the robotic walker,which has a simple mechanical structure and control method.展开更多
The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of r...The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.展开更多
Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and ...Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.展开更多
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which i...A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.展开更多
Nowadays,the interest in hybrid vehicles is constantly increasing,not only in the automotive sector,but also in other transportation systems,to reduce pollution and emissions and to improve the overall efficiency of t...Nowadays,the interest in hybrid vehicles is constantly increasing,not only in the automotive sector,but also in other transportation systems,to reduce pollution and emissions and to improve the overall efficiency of the vehicles.Although railway vehicles are typically the most eco-friendly transportation system,since commonly their primary energy source is electricity,they can still gain benefits from hybrid technologies,as many lines worldwide are not electrified.In fact,hybrid solutions allow ICEpowered(internal combustion engine)railway vehicles,such as diesel multiple units(DMUs),to operate in fullelectric mode even when the track lacks electrification.The possibility to switch to full electric mode is of paramount importance when the vehicle runs on urban or underground track sections,where low or zero emission levels are required.We conduct the feasibility study of hybridization of an existing DMU vehicle,designed by Blue Engineering S.r.l.,running on the Aosta–Torino Italian railway line,which includes a non-electrified urban track section and an electrified underground section.The hybridization is obtained by replacing one of the diesel generators installed on the original vehicle with a battery pack,which ensures the vehicle to operate in full-electric mode to complete its mission profile.The hybridization is also exploited to implement a regenerative braking strategy,which allows an increase in the energetical efficiency of the vehicle up to 18%.This work shows the sizing of the battery pack based on dynamic simulations performed on the Turin underground track section,and the results demonstrate the feasibility of the hybridization process.展开更多
Nonlinear electro-mechanical behaviors of piezoelectric materials and viscoelastic nature of polymers result in the overall nonlinear and hysteretic responses of active polymeric composites. This study presents a hybr...Nonlinear electro-mechanical behaviors of piezoelectric materials and viscoelastic nature of polymers result in the overall nonlinear and hysteretic responses of active polymeric composites. This study presents a hybrid-unit-cell model for obtaining the effective nonlinear and rate-dependent hysteretic electro-mechanical responses of hybrid piezocomposites. The studied hybrid piezocomposites consist of unidirectional piezoelectric fibers embedded in a polymeric matrix, which is reinforced with piezoelectric particles. The hybrid-unit-cell model is derived based on a unit-cell model of fiber-reinforced composites consisting of fiber and matrix subcells, in which the matrix subcells are comprised of a unit-cell model of particle-reinforced composites. Nonlinear electro-mechanical responses are considered for the piezoelectric constituents while a viscoelastic solid constitutive model is used for the polymer constituent. The hybrid-unit cell model is used to examine the effects of different responses of the constituents, microstructural arrangements, and loading histories on the overall nonlinear and hysteretic electro-mechanical responses of the hybrid piezocomposites, which are useful in designing active polymeric composites.展开更多
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.
基金Supported by National Natural Science Foundation of China(No.61370088)International Scientific and Technological Cooperation Projects of China(No.2012DFB10060)Topic of the Ministry of Education about Humanities and Social Sciences of China(No.12JDGC007)
文摘In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.
基金This work was supported by the National Natural Science Foundation of China under Grant[number 51575167]。
文摘This paper focuses on the controller design using fuzzy sliding mode control(FSMC)with application to electro-mechanical brake(EMB)systems using BLDC Motor.The EMB controller transmits the control signal to the motor driver to rotate the motor.The torque distribution of motors is studied in this paper actually.Firstly,the model of the EMB system is established.Then the state observer is developed to estimate the vehicle states including the vehicle velocity and longitudinal force.Due to the fact that the EMB system is nonlinear and uncertain,a FSMC strategy based on wheel slip ratio is proposed,where both the normal and emergency braking conditions are taken into account.The equivalent control law of sliding mode controller is designed on the basis of the variation of the front axle and rear axle load during the brake process,while the switching control law is adjusted by the fuzzy corrector.The simulation results illustrate that the FSMC strategy has the superior performance,better adaptability to various types of roads,and shorter braking distance,as compared to PID control and traditional sliding mode control technologies.Finally,the hardware-in-loop(HIL)experimental results have exemplified the validation of the developed methodology.
基金supported by National Natural Science Foundation of China (Grant No. 50875054)National Key Laboratory of Vehicular Transmission of China (Grant No. 51457050105HT0112).
文摘Hydraulic hybrid vehicles (HHV) with secondary regulation technology has the potential of improving fuel economy by operating the engine in the optimum efficiency range and making use of regenerative braking. Hydrostatic transmission technology has the advantage of higher power density and the ability to accept the high rates and high frequencies of charging and discharging, both of which are not favorable for batteries, but the lower energy density requires special power matching design and control strategy to coordinate all the powertrain components in an optimal manner. A multi-objective optimization method is proposed to distinguish the components size values of HHV by considering the requirements of driving cycles and technology aspects. The regenerative braking strategy and energy control strategy based on the optimized HHV is proposed to recovery the braking energy and distribute the regenerated braking energy. Simulation results show that by taking the optimized configuration of HHV, adopting the regenerative braking strategy and energy control strategy are helpful to improve the system efficiency and fuel economy of HHV under urban driving cycles.
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
基金Supported by National Natural Science Foundation of China(Grant No.U1813222)Hebei Provincial Natural Science Foundation of China(Grant No.E2018202316).
文摘Walking assistance can be realized by active and passive robotic walkers when their users walk on even roads.However,fast signal processing and real-time control are necessary for active robotic walkers when the users walk on slopes,while assistive forces cannot be provided by passive robotic walkers when the users walk uphill.A robotic walker with an active-passive hybrid actuator(APHA)was developed in this study.The APHA,which consists of a rotary magnetorheological(MR)brake and a DC motor,can provide mobility assistance to users walking both uphill and downhill via the cooperative operation of the MR brake and DC motor.The rotary MR brake was designed with a T-shaped configuration,and the system was optimized to minimize the brake volume.Prototypes of the APHA and robotic walker were constructed.A control algorithm for the robotic walker was developed based on the characteristics of the APHA and the structure of the robotic walker.The mechanical properties of the APHA were characterized,and experiments were conducted to evaluate the mobility assistance supplied by the robotic walker on different roads.The results show that the APHA can meet the requirements of the robotic walker,and suitable assistive forces can be provided by the robotic walker,which has a simple mechanical structure and control method.
基金Supported by the National High Technology Research and Development Program of China(2011AA11A252)
文摘The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.
基金Electric Automobile and Intelligent Connected Automobile Industry Innovation Project of Anhui Province of China(Grant No.JAC2019022505)Key Research and Development Projects in Shandong Province of China(Grant No.2019TSLH701).
文摘Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
基金Supported by the National Natural Science Foundation of China(No.50875054)Weihai Science and Technology Development Plan Project(No.2012DXGJ13)
文摘A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.
文摘Nowadays,the interest in hybrid vehicles is constantly increasing,not only in the automotive sector,but also in other transportation systems,to reduce pollution and emissions and to improve the overall efficiency of the vehicles.Although railway vehicles are typically the most eco-friendly transportation system,since commonly their primary energy source is electricity,they can still gain benefits from hybrid technologies,as many lines worldwide are not electrified.In fact,hybrid solutions allow ICEpowered(internal combustion engine)railway vehicles,such as diesel multiple units(DMUs),to operate in fullelectric mode even when the track lacks electrification.The possibility to switch to full electric mode is of paramount importance when the vehicle runs on urban or underground track sections,where low or zero emission levels are required.We conduct the feasibility study of hybridization of an existing DMU vehicle,designed by Blue Engineering S.r.l.,running on the Aosta–Torino Italian railway line,which includes a non-electrified urban track section and an electrified underground section.The hybridization is obtained by replacing one of the diesel generators installed on the original vehicle with a battery pack,which ensures the vehicle to operate in full-electric mode to complete its mission profile.The hybridization is also exploited to implement a regenerative braking strategy,which allows an increase in the energetical efficiency of the vehicle up to 18%.This work shows the sizing of the battery pack based on dynamic simulations performed on the Turin underground track section,and the results demonstrate the feasibility of the hybridization process.
文摘Nonlinear electro-mechanical behaviors of piezoelectric materials and viscoelastic nature of polymers result in the overall nonlinear and hysteretic responses of active polymeric composites. This study presents a hybrid-unit-cell model for obtaining the effective nonlinear and rate-dependent hysteretic electro-mechanical responses of hybrid piezocomposites. The studied hybrid piezocomposites consist of unidirectional piezoelectric fibers embedded in a polymeric matrix, which is reinforced with piezoelectric particles. The hybrid-unit-cell model is derived based on a unit-cell model of fiber-reinforced composites consisting of fiber and matrix subcells, in which the matrix subcells are comprised of a unit-cell model of particle-reinforced composites. Nonlinear electro-mechanical responses are considered for the piezoelectric constituents while a viscoelastic solid constitutive model is used for the polymer constituent. The hybrid-unit cell model is used to examine the effects of different responses of the constituents, microstructural arrangements, and loading histories on the overall nonlinear and hysteretic electro-mechanical responses of the hybrid piezocomposites, which are useful in designing active polymeric composites.