The dual-mode electro-mechanical transmission(EMT)system is a crucial part of power-split hybrid electric vehicles(HEVs),especially for the heavy HEVs.To improve the precision of the system power distribution and the ...The dual-mode electro-mechanical transmission(EMT)system is a crucial part of power-split hybrid electric vehicles(HEVs),especially for the heavy HEVs.To improve the precision of the system power distribution and the response speed of the electric power supply,a model-based double closed-loop coordinated control strategy is proposed.As the basis of the proposed control strategy,an EMT system model,particularly of an electrical system,is established first.The proposed control strategy includes the power distribution strategy,battery power closed-loop feedback control strategy,and motor coordinated control strategy.To verify the feasibility of the proposed control strategy,simulation and experiment are performed.The results indicate that the proposed control strategy can realize the expected power distribution by coordinating generators and motors and achieve rapid and stable electric power supply.展开更多
Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mec...Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mechanical variable transmission system is considered one of avilable workarounds.It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams.With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train,four kinds of dual-mode electro-mechanical transmission system scheme are designed.And the velocity,torque and power characteristics of one of the programs are analyzed.The magnitude of the electric split-flow power is an important factor which influences the system performance,so in the parameters matching design,it needs to reduce the power needs under the first mode of the motor.The motor,output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set.The analysis method is to provide a reference for hybrid vehicles' design.As the involved rotational speed and torque relationships are the natural contact of every part of transmission system,a theory basis of system program and performance analysis is provided.展开更多
Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse...Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.展开更多
Introduction: Human papillomavirus (HPV) infection is the most widespread sexually transmitted infection in the world. Today, there is growing evidence that HPV can be transmitted early in life, and one potential rout...Introduction: Human papillomavirus (HPV) infection is the most widespread sexually transmitted infection in the world. Today, there is growing evidence that HPV can be transmitted early in life, and one potential route is mother-to-child transmission. Data on this route of HPV transmission are scarce in Africa and particularly in Burkina Faso, where no data on the subject are yet available. The aim of our study was to estimate the rate of mother-to-child transmission of HPV infection and to identify circulating genotypes. Methodology: Cervico-uterine samples were collected from 100 full-term pregnant women and, buccal samples were obtained from their newborns at Hopital Saint Camille de Ouagadougou (HOSCO) by the specialist physician. HPV DNA amplification and genotyping were performed by PCR followed by hybridization using the HPV Direct Flow Chips kit, detecting 36 genotypes including 18 high-risk and 18 low-risk. Results: The prevalence of HPV in newborns was 8% (8/100). Six (6) HPV-positive neonates had HPV-positive mothers, while 2 HPV-positive neonates had HPV-negative mothers. The vertical transmission rate was 26.09% (6/23). Mother-newborn genotypes were concordant. However, the genotype profile of the newborns was more restricted than that of the mothers. Conclusion: HPV DNA was found in 8% of newborns in our study. The genotype profile of the mother-newborn pair was concordant. Asymptomatic HPV infection in a pregnant woman could constitute a risk factor for vertical transmission.展开更多
We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a me...We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a mechanical resonator as a coupling interface. By doping CK medium into the mechanical resonator, CK couplings between the cavity fields and the mechanical resonator are introduced. We investigate the effects of CK coupling strength on the transmission spectrum of the cavity field, including the transmission rate, nonreciprocity and four-wave mixing(FWM). We find that the transmission spectrum of the probe field can show two obvious transparent windows, which can be widened by increasing the CK coupling strength. For the transmission between the two cavity fields, the perfect nonreciprocity and reciprocity are present and modulated by CK coupling and phase difference between two effective optomechanical couplings. In addition, the effects of the optomechanical and CK couplings on FWM show that the single peak of FWM is split into three symmetrical peaks due to the introduction of the CK effect.展开更多
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol,so increasing its yield is essential to ensure the sugar security and bioenergy production.Intergeneric hybri...Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol,so increasing its yield is essential to ensure the sugar security and bioenergy production.Intergeneric hybridization is a highly efficient method to produce new genetic variants of crop plants,particularly those species with high ploidy such as sugarcane(Saccharum spp.).Tripidium arundinaceum exhibits many desirable agronomic traits,and has been widely studied to produce hybrids with improved stress tolerance and other characteristics in sugarcane breeding.However,the genetic relationship between T.arundinaceum and Saccharum species,and the individual T.arundinaceum chromosomal compositions in sugarcane hybrids are still elusive.Here we used whole-genome single-nucleotide polymorphisms(SNPs)to ascertain the phylogenetic relationships between these species and found that T.arundinaceum is more closely related to Saccharum than Sorghum,in contrast to the previous narrow genetic analyses using chloroplast DNA.Additionally,oligonucleotide(oligo)-based chromosome-specific painting derived from Saccharum officinarum was able to distinctly identify the chromosomes of T.arundinaceum.We developed the oligo-genomic in situ hybridization(GISH)system for the first time,to unveil the novel chromosome translocations and the transmission of individual T.arundinaceum chromosomes in sugarcane progeny.Notably,we discovered that the chromosomal transmission of T.arundinaceum exhibited several different inheritance modes,including n,2n,and over 2n in the BC1 progenies.Such inheritance patterns may have resulted from first division restitution(FDR)or FDR+nondisjunction of a chromosome with the sister chromatids in the second meiosis division/second division restitution(FDR+NSC/SDR)model during meiosis.These results will be of substantial benefit for the further selection of T.arundinaceum chromosomes for sugarcane genetic improvement.展开更多
Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened com...Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened communication overhead,and escalated storage costs,have significantly constrained the broad-scale application of blockchain.This paper introduces a novel Encode-and CRT-based Scalability Scheme(ECSS),meticulously refined to enhance both block broadcasting and storage.Primarily,ECSS categorizes nodes into distinct domains,thereby reducing the network diameter and augmenting transmission efficiency.Secondly,ECSS streamlines block transmission through a compact block protocol and robust RS coding,which not only reduces the size of broadcasted blocks but also ensures transmission reliability.Finally,ECSS utilizes the Chinese remainder theorem,designating the block body as the compression target and mapping it to multiple modules to achieve efficient storage,thereby alleviating the storage burdens on nodes.To evaluate ECSS’s performance,we established an experimental platformand conducted comprehensive assessments.Empirical results demonstrate that ECSS attains superior network scalability and stability,reducing communication overhead by an impressive 72% and total storage costs by a substantial 63.6%.展开更多
Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between th...Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between the control and communication components.To improve the system's overall performance,exploring the co-design of communication and control systems is crucial.In this work,we propose a new metric±Age of Loop Information with Flexible Transmission(AoLI-FT),which dynamically adjusts the maximum number of uplink(UL)and downlink(DL)transmission rounds,thus enhancing reliability while ensuring timeliness.Our goal is to explore the relationship between AoLI-FT,reliability,and control convergence rate,and to design optimal blocklengths for UL and DL that achieve the desired control convergence rate.To address this issue,we first derive a closed-form expression for the upper bound of AoLI-FT.Subsequently,we establish a relationship between communication reliability and control convergence rates using a Lyapunov-like function.Finally,we introduce an iterative alternating algorithm to determine the optimal communication and control parameters.The numerical results demonstrate the significant performance advantages of our proposed communication and control co-design strategy in terms of latency and control cost.展开更多
Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,t...Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.展开更多
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil...With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission.展开更多
Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of th...Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.展开更多
The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model(FDTM)in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network(L...The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model(FDTM)in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network(LM-NN)technique.The fractional dengue transmission model(FDTM)consists of 12 compartments.The human population is divided into four compartments;susceptible humans(S_(h)),exposed humans(E_(h)),infectious humans(I_(h)),and recovered humans(R_(h)).Wolbachia-infected and Wolbachia-uninfected mosquito population is also divided into four compartments:aquatic(eggs,larvae,pupae),susceptible,exposed,and infectious.We investigated three different cases of vertical transmission probability(η),namely when Wolbachia-free mosquitoes persist only(η=0.6),when both types of mosquitoes persist(η=0.8),and when Wolbachia-carrying mosquitoes persist only(η=1).The objective of this study is to investigate the effectiveness of Wolbachia in reducing dengue and presenting the numerical results by using the stochastic structure LM-NN approach with 10 hidden layers of neurons for three different cases of the fractional order derivatives(α=0.4,0.6,0.8).LM-NN approach includes a training,validation,and testing procedure to minimize the mean square error(MSE)values using the reference dataset(obtained by solving the model using the Adams-Bashforth-Moulton method(ABM).The distribution of data is 80% data for training,10% for validation,and,10% for testing purpose)results.A comprehensive investigation is accessible to observe the competence,precision,capacity,and efficiency of the suggested LM-NN approach by executing the MSE,state transitions findings,and regression analysis.The effectiveness of the LM-NN approach for solving the FDTM is demonstrated by the overlap of the findings with trustworthy measures,which achieves a precision of up to 10^(-4).展开更多
Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ...Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.展开更多
While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer ...While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.展开更多
With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t...With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power g...The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.展开更多
Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technol...Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable.展开更多
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.51705480,No.51575043,Nos.51975048,U1564210,and U1764257).
文摘The dual-mode electro-mechanical transmission(EMT)system is a crucial part of power-split hybrid electric vehicles(HEVs),especially for the heavy HEVs.To improve the precision of the system power distribution and the response speed of the electric power supply,a model-based double closed-loop coordinated control strategy is proposed.As the basis of the proposed control strategy,an EMT system model,particularly of an electrical system,is established first.The proposed control strategy includes the power distribution strategy,battery power closed-loop feedback control strategy,and motor coordinated control strategy.To verify the feasibility of the proposed control strategy,simulation and experiment are performed.The results indicate that the proposed control strategy can realize the expected power distribution by coordinating generators and motors and achieve rapid and stable electric power supply.
基金supported by Foundation of National Key Lab of Vehicular Transmission of China
文摘Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mechanical variable transmission system is considered one of avilable workarounds.It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams.With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train,four kinds of dual-mode electro-mechanical transmission system scheme are designed.And the velocity,torque and power characteristics of one of the programs are analyzed.The magnitude of the electric split-flow power is an important factor which influences the system performance,so in the parameters matching design,it needs to reduce the power needs under the first mode of the motor.The motor,output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set.The analysis method is to provide a reference for hybrid vehicles' design.As the involved rotational speed and torque relationships are the natural contact of every part of transmission system,a theory basis of system program and performance analysis is provided.
基金supported in part by the ZTE Industry-University-Institute Cooperation Funds.
文摘Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.
文摘Introduction: Human papillomavirus (HPV) infection is the most widespread sexually transmitted infection in the world. Today, there is growing evidence that HPV can be transmitted early in life, and one potential route is mother-to-child transmission. Data on this route of HPV transmission are scarce in Africa and particularly in Burkina Faso, where no data on the subject are yet available. The aim of our study was to estimate the rate of mother-to-child transmission of HPV infection and to identify circulating genotypes. Methodology: Cervico-uterine samples were collected from 100 full-term pregnant women and, buccal samples were obtained from their newborns at Hopital Saint Camille de Ouagadougou (HOSCO) by the specialist physician. HPV DNA amplification and genotyping were performed by PCR followed by hybridization using the HPV Direct Flow Chips kit, detecting 36 genotypes including 18 high-risk and 18 low-risk. Results: The prevalence of HPV in newborns was 8% (8/100). Six (6) HPV-positive neonates had HPV-positive mothers, while 2 HPV-positive neonates had HPV-negative mothers. The vertical transmission rate was 26.09% (6/23). Mother-newborn genotypes were concordant. However, the genotype profile of the newborns was more restricted than that of the mothers. Conclusion: HPV DNA was found in 8% of newborns in our study. The genotype profile of the mother-newborn pair was concordant. Asymptomatic HPV infection in a pregnant woman could constitute a risk factor for vertical transmission.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61605225, 61772295, 12174247, and 11664018)the Natural Science Foundation of Shanghai (Grant No. 16ZR1448400)。
文摘We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr(CK) effect. The system consists of two tunneling coupling optomechanical cavities with a mechanical resonator as a coupling interface. By doping CK medium into the mechanical resonator, CK couplings between the cavity fields and the mechanical resonator are introduced. We investigate the effects of CK coupling strength on the transmission spectrum of the cavity field, including the transmission rate, nonreciprocity and four-wave mixing(FWM). We find that the transmission spectrum of the probe field can show two obvious transparent windows, which can be widened by increasing the CK coupling strength. For the transmission between the two cavity fields, the perfect nonreciprocity and reciprocity are present and modulated by CK coupling and phase difference between two effective optomechanical couplings. In addition, the effects of the optomechanical and CK couplings on FWM show that the single peak of FWM is split into three symmetrical peaks due to the introduction of the CK effect.
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金funded by the Central Government and Local Science and Technology Development Special Project,China(2022L3086)the Sugarcane Research Foundation of Guangxi University,China(2022GZB006)+3 种基金supported by the National Natural Science Foundation of China(31771863)the Academy of Sugarcane and Sugar Industry,Guangxi University,China(ASSI-2023009)an independent fund of Guangxi Key Laboratory of Sugarcane Biology,China(GXKLSCB-20190201)the China Agriculture Research System of MOF and MARA(CARS-20-1-5)。
文摘Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol,so increasing its yield is essential to ensure the sugar security and bioenergy production.Intergeneric hybridization is a highly efficient method to produce new genetic variants of crop plants,particularly those species with high ploidy such as sugarcane(Saccharum spp.).Tripidium arundinaceum exhibits many desirable agronomic traits,and has been widely studied to produce hybrids with improved stress tolerance and other characteristics in sugarcane breeding.However,the genetic relationship between T.arundinaceum and Saccharum species,and the individual T.arundinaceum chromosomal compositions in sugarcane hybrids are still elusive.Here we used whole-genome single-nucleotide polymorphisms(SNPs)to ascertain the phylogenetic relationships between these species and found that T.arundinaceum is more closely related to Saccharum than Sorghum,in contrast to the previous narrow genetic analyses using chloroplast DNA.Additionally,oligonucleotide(oligo)-based chromosome-specific painting derived from Saccharum officinarum was able to distinctly identify the chromosomes of T.arundinaceum.We developed the oligo-genomic in situ hybridization(GISH)system for the first time,to unveil the novel chromosome translocations and the transmission of individual T.arundinaceum chromosomes in sugarcane progeny.Notably,we discovered that the chromosomal transmission of T.arundinaceum exhibited several different inheritance modes,including n,2n,and over 2n in the BC1 progenies.Such inheritance patterns may have resulted from first division restitution(FDR)or FDR+nondisjunction of a chromosome with the sister chromatids in the second meiosis division/second division restitution(FDR+NSC/SDR)model during meiosis.These results will be of substantial benefit for the further selection of T.arundinaceum chromosomes for sugarcane genetic improvement.
文摘Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened communication overhead,and escalated storage costs,have significantly constrained the broad-scale application of blockchain.This paper introduces a novel Encode-and CRT-based Scalability Scheme(ECSS),meticulously refined to enhance both block broadcasting and storage.Primarily,ECSS categorizes nodes into distinct domains,thereby reducing the network diameter and augmenting transmission efficiency.Secondly,ECSS streamlines block transmission through a compact block protocol and robust RS coding,which not only reduces the size of broadcasted blocks but also ensures transmission reliability.Finally,ECSS utilizes the Chinese remainder theorem,designating the block body as the compression target and mapping it to multiple modules to achieve efficient storage,thereby alleviating the storage burdens on nodes.To evaluate ECSS’s performance,we established an experimental platformand conducted comprehensive assessments.Empirical results demonstrate that ECSS attains superior network scalability and stability,reducing communication overhead by an impressive 72% and total storage costs by a substantial 63.6%.
基金supported in part by the National Key R&D Program of China under Grant 2024YFE0200500in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515012615in part by the Department of Science and Technology of Guangdong Province under Grant 2021QN02X491。
文摘Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between the control and communication components.To improve the system's overall performance,exploring the co-design of communication and control systems is crucial.In this work,we propose a new metric±Age of Loop Information with Flexible Transmission(AoLI-FT),which dynamically adjusts the maximum number of uplink(UL)and downlink(DL)transmission rounds,thus enhancing reliability while ensuring timeliness.Our goal is to explore the relationship between AoLI-FT,reliability,and control convergence rate,and to design optimal blocklengths for UL and DL that achieve the desired control convergence rate.To address this issue,we first derive a closed-form expression for the upper bound of AoLI-FT.Subsequently,we establish a relationship between communication reliability and control convergence rates using a Lyapunov-like function.Finally,we introduce an iterative alternating algorithm to determine the optimal communication and control parameters.The numerical results demonstrate the significant performance advantages of our proposed communication and control co-design strategy in terms of latency and control cost.
基金supported by the National Natural Science Foundation of China(No.61971062)BUPT Excellent Ph.D.Students Foundation(CX2022153)。
文摘Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.
基金supported in part by the Tianjin Technology Innovation Guidance Special Fund Project under Grant No.21YDTPJC00850in part by the National Natural Science Foundation of China under Grant No.41906161in part by the Natural Science Foundation of Tianjin under Grant No.21JCQNJC00650。
文摘With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission.
基金funded by the National Key R&D Program of China [2022YFC2305200]Natural Science Foundation of Xinjiang Uygur Autonomous Region [2021A01D145 and 2022D01A115]Applied Technology Research and Development Programing Project of Kashgar Prefecture [KS2021031 and KS2021034]。
文摘Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.
文摘The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model(FDTM)in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network(LM-NN)technique.The fractional dengue transmission model(FDTM)consists of 12 compartments.The human population is divided into four compartments;susceptible humans(S_(h)),exposed humans(E_(h)),infectious humans(I_(h)),and recovered humans(R_(h)).Wolbachia-infected and Wolbachia-uninfected mosquito population is also divided into four compartments:aquatic(eggs,larvae,pupae),susceptible,exposed,and infectious.We investigated three different cases of vertical transmission probability(η),namely when Wolbachia-free mosquitoes persist only(η=0.6),when both types of mosquitoes persist(η=0.8),and when Wolbachia-carrying mosquitoes persist only(η=1).The objective of this study is to investigate the effectiveness of Wolbachia in reducing dengue and presenting the numerical results by using the stochastic structure LM-NN approach with 10 hidden layers of neurons for three different cases of the fractional order derivatives(α=0.4,0.6,0.8).LM-NN approach includes a training,validation,and testing procedure to minimize the mean square error(MSE)values using the reference dataset(obtained by solving the model using the Adams-Bashforth-Moulton method(ABM).The distribution of data is 80% data for training,10% for validation,and,10% for testing purpose)results.A comprehensive investigation is accessible to observe the competence,precision,capacity,and efficiency of the suggested LM-NN approach by executing the MSE,state transitions findings,and regression analysis.The effectiveness of the LM-NN approach for solving the FDTM is demonstrated by the overlap of the findings with trustworthy measures,which achieves a precision of up to 10^(-4).
基金supported by the Joint Research Fund in Smart Grid(U23B20120)under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China。
文摘Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1444100)
文摘While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.
基金supported in part by collaborative research with Toyota Motor Corporation,in part by ROIS NII Open Collaborative Research under Grant 21S0601,in part by JSPS KAKENHI under Grants 20H00592,21H03424.
文摘With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
文摘The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.
文摘Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable.