期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electro-spraying/spinning: A novel battery manufacturing technology
1
作者 Zhuan Hu Jiaxin Hao +4 位作者 Dongyang Shen Caitian Gao Zhaomeng Liu Jianguo Zhao Bingan Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期81-88,共8页
Lithium-ion battery(LIB) industry seems to have met its bottle neck in cutting down producing costs even though much efforts have been put into building a complete industrial chain. Actually, manufacturing methods can... Lithium-ion battery(LIB) industry seems to have met its bottle neck in cutting down producing costs even though much efforts have been put into building a complete industrial chain. Actually, manufacturing methods can greatly affect the cost of battery production. Up to now, lithium ion battery producers still adopt manufacturing methods with cumbersome sub-components preparing processes and costly assembling procedures, which will undoubtedly elevate the producing cost. Herein, we propose a novel approach to directly assemble battery components(cathode, anode and separator) in an integrated way using electro-spraying and electro-spinning technologies. More importantly, this novel battery manufacturing method can produce LIBs in large scale, and the products show excellent mechanical strength, flexibility, thermal stability and electrolyte wettability. Additionally, the performance of the as-prepaed Li Fe PO_(4)||graphite full cell produced by this new method is comparable or even better than that produced by conventional manufacturing approach. In brief, this work provides a new promising technology to prepare LIBs with low cost and better performance. 展开更多
关键词 electro-spraying Electro-spinning Integrated electrode Lithium-ion battery
下载PDF
Electro-spray of high viscous liquids for producing mono-sized spherical alginate beads 被引量:3
2
作者 Hamid Moghadam Mohsen Samimi +1 位作者 Abdolreza Samimi Mohamad Khorram 《Particuology》 SCIE EI CAS CSCD 2008年第4期271-275,共5页
Alginate beads, often used for controlled release of enzymes and drugs, are usually produced by spraying sodium alginate liquid into a gelling agent using mechanical vibration nozzle or air jet. In this work an altern... Alginate beads, often used for controlled release of enzymes and drugs, are usually produced by spraying sodium alginate liquid into a gelling agent using mechanical vibration nozzle or air jet. In this work an alternative method of electro-spray was employed to form droplets with desired size from a highly viscous sodium alginate solution using constant DC voltage. The droplets were then cured in a calcium chloride solution. The main objective was to produce mono-sized beads from such a highly viscous and non-Newtonian liquid (1000–5000 mPa s). The effects of nozzle diameter, flow rate and concentration of liquid on the size of the beads were investigated. Among the parameters studied, voltage had a pronounced effect on the size of beads as compared to flow rate, nozzle diameter and concentration of alginate liquid. The size of beads was reduced to a minimum value with increasing the voltage in the range of 0–10 kV. At the early stages of voltage increase (i.e. up to about 4 kV), the rate of size reduction was relatively low, while the dripping mode dominated. However, in the middle part of the range of applied voltage, where the rate of size reduction was high (i.e. about 4–7 kV), an unstable transition occurred between dripping and jetting. At the end part of the range (i.e. 7–10 kV) jet mode of spray was observed. Increasing the height of fall of the droplets was found to improve the sphericity of the beads, because of the increased time of flight for the droplets. This was especially identifiable at higher concentrations of the alginate liquid (i.e. 3 w/v%). 展开更多
关键词 Electro-spray Highly viscous liquid Constant DC electric field Alginate beads
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部