A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint...Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.展开更多
This article introduces the 40 kW electric servo system used by Gravity-1 strap-on launch vehicle, which mainly includes the composition, function and related equipment of the system. Aiming at the measurement deviati...This article introduces the 40 kW electric servo system used by Gravity-1 strap-on launch vehicle, which mainly includes the composition, function and related equipment of the system. Aiming at the measurement deviation caused by the closed loop of resolver, a compensation algorithm is designed;aiming at the monitoring of the output power of the thermal battery, an algorithm without sensory monitoring the bus current is designed. In the end, the effectiveness of the two algorithms was verified by testing.展开更多
This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the ...This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the servo mechanism,and analyzes the mechanism of the servo device's implementation of the"positioning"func-tion on the control device.Intended to guide the continuous adjustment process in controlling the function/accuracy of actuator equipment and application debugging,ensuring the safe and stable operation of production equipment and facilities.展开更多
This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages ...This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.展开更多
In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized...In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.展开更多
Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varietie...Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.展开更多
In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenom...In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenomena is considered. Based on the theory of fuzzy recognition and fault diagnosis, this method only depends on experience and statistical data to set up fuzzy query relationship between the outside phenomena (fault characters) and the fault sources (fault patterns). From this relationship the most probable fault sources can be obtained, to attain the goal of quick diagnosis. Based on the above approach, the standard fuzzy relationship matrix is stored in the computer as a system database. And experiment data are given to show the fault diagnosis results. The important parameters can be on line sampled and analyzed, and when faults occur, faults can be found, the alarm is given and the controller output is regulated.展开更多
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s...Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.展开更多
A modified method of design of no-steady-error and anti-disturbance controller is proposed for the design of tank stabilizers. Using a reduced-order observer to estimate its mode, disturbance can be compensated. This ...A modified method of design of no-steady-error and anti-disturbance controller is proposed for the design of tank stabilizers. Using a reduced-order observer to estimate its mode, disturbance can be compensated. This enables the system to resist sinusoidal disturbance with any magnitude. Estimate of angular velocity is used as the state feedback to replace the expensive gyro and tachometer generator. The modified method excels the traditional, and provides a new way for the design of tank fire control system. It can also be applied for the design of other servo systems in vehicle and aircraft.展开更多
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf...A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.展开更多
Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in...Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is展开更多
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potentia...With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking展开更多
Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so...Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.展开更多
Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase erro...Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.展开更多
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass...Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.展开更多
Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fa...Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fault localization. The first-stage RBF neural network is adopted as a failure observer to realize the failure detection. The trained RBF observer, working concurrently with the actual system, accepts the input voltage signal to the servo valve and the measurements of the ram displacements, rebuilds the system states, and estimates accurately the output of the system. By comparing the estimated outputs with the actual measurements, the residual signal is generated and then analyzed to report the occurrence of faults. The second-stage RBF neural network can locate the fault occurring through the residual and net parameters of the first-stage RBF observer. Considering the slow convergence speed of the K-means clustering algorithm, an improved K-means clustering algorithm and a self-adaptive adjustment algorithm of learning rate arc presented, which obtain the optimum learning rate by adjusting self-adaptive factor to guarantee the stability of the process and to quicken the convergence. The experimental results demonstrate that the two-stage RBF neural network model is effective in detecting and localizing the failure of the hydraulic position servo system.展开更多
Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious...Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious disadvantage that the roller would often be locked when it is overloaded.For the purpose of designing the first set of domestic twin-roller,four-cylinder and six-framework electro-hydraulic HSDS of seamless tube rolling mill,an experiment system that can simulate the process of seamless tube rolling is constructed.A digital simulation model of the experiment system is built with AMESim software and validated by comparing the simulation results with experiment results.The sudden load response of the screw piston position is studied with the built model and the experiment system.To improve the HSDS's positioning accuracy with large load,a hybrid control scheme of combining load disturbance feedforward compensation(LDFC) method based on servo valve's pressure-stroke feature and anti-saturation integral control(ASIC) is proposed.Both results of simulation and experiment indicate that the transient response time of the single-roller HSDS with the proposed scheme decreases from 0.65 s to less than 0.2 s without static error.To improve the system dynamic stiffness and production qualified rate,a flow rate feedforward compensation(FFC) control strategy based on oil compressibility to dynamic position error is proposed.This FFC strategy is validated with experiments in which the transient error caused by sudden load is reduced to less than 25% of that without FFC.By extending the simulation model to HSDS of a twin-roller,four-cylinder rolling mill,analyzing the mill deformation,and applying the LDFC,ASIC and FFC to the HSDS,the dynamic performance and positioning accuracy of compensated multi-roller HSDS at biting moment are predicted.The research results provide a theoretical and experimental basis for the design of HSDS of seamless steel tube rolling mill.展开更多
The usual mixed sensitivity H ∞ design is not suitable for servo design, because there exist pole/zero cancellations and the resulting control law will include a pure differentiation factor. This paper presents an al...The usual mixed sensitivity H ∞ design is not suitable for servo design, because there exist pole/zero cancellations and the resulting control law will include a pure differentiation factor. This paper presents an alternative design, i.e. the PS/T two block design. It is proved that in the PS/T problem there is no cancellation of the plant poles by the controller. The PS/T problem can take full advantage of the two block design approach: simplicity and intuition. And the use of PS in design is more practical for it represents the system’s disturbance rejection performance. The PS/T two block design details are discussed and illustrated by an example. The results of this paper can also be used for MIMO systems.展开更多
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real...Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.展开更多
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金Thework issupportedby the Key Scienceand Technology Programof Henan Province(Grant No.222102220104)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014)the High Level Talent Foundation of Henan University of Technology(Grant No.2020BS043).
文摘Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.
文摘This article introduces the 40 kW electric servo system used by Gravity-1 strap-on launch vehicle, which mainly includes the composition, function and related equipment of the system. Aiming at the measurement deviation caused by the closed loop of resolver, a compensation algorithm is designed;aiming at the monitoring of the output power of the thermal battery, an algorithm without sensory monitoring the bus current is designed. In the end, the effectiveness of the two algorithms was verified by testing.
文摘This article analyzes and discusses the working principle and problems encountered by various servo amplification devices used in the on-site continuous adjustment system,analyzes and discusses the application of the servo mechanism,and analyzes the mechanism of the servo device's implementation of the"positioning"func-tion on the control device.Intended to guide the continuous adjustment process in controlling the function/accuracy of actuator equipment and application debugging,ensuring the safe and stable operation of production equipment and facilities.
文摘This project adopts an advanced microcontroller as the core control unit,which accurately commands the servo drive,realizes the real-time light chasing and charging function of the solar panel,and effectively manages the power supply system of the street light.At the same time,the system is able to continuously monitor the operation status of the servo within the range of 0°to 180°to ensure that it is trouble-free and not offline.The hardware system construction consists of five modules:a power module,solar panel module,servo module,street light module,and Organic Light-Emitting Diode(OLED)display module.Each module works together to support the stable operation of the whole system.The system workflow is to accurately determine the direction of the light source by collecting real-time light intensity data through four precision photoresistors.Subsequently,the microcontroller intelligently controls the helm module based on these data to drive the solar panel to rotate within a range of 180°to accurately track the sun’s orientation.The street light provides two lighting modes,automatic and manual,to meet the needs of different scenarios.During the daytime,the solar panels work actively to monitor and collect solar energy efficiently in real-time,meanwhile,when night falls,the solar panels switch to standby mode and the streetlights light up automatically,illuminating the road ahead for pedestrians.Compared with the traditional solar street lights on the market,the intelligent solar light chasing road system introduced in this project has significant advantages.Its unique light-chasing algorithm enables the solar panel to continuously track the light source from sunrise to sunset,thus significantly improving the charging efficiency.Compared with traditional street lights,the biggest advantage of this project is the proposed light-chasing algorithm,which can always charge from sunrise until sunset,making the charging efficiency increase by 38%to 47%.The charging efficiency is 20%to 38%higher than that of traditional street lamps.Simultaneously,the biggest advantage of this project is that the power storage capacity is higher than 35%of the traditional solar street light.Bringing users a more durable and stable lighting experience.
文摘In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.
文摘Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.
文摘In an actual control system, it is often difficult to find out where the faults are if only based on the outside fault phenomena, acquired frequently from a fault system. So the fault diagnosis by outside fault phenomena is considered. Based on the theory of fuzzy recognition and fault diagnosis, this method only depends on experience and statistical data to set up fuzzy query relationship between the outside phenomena (fault characters) and the fault sources (fault patterns). From this relationship the most probable fault sources can be obtained, to attain the goal of quick diagnosis. Based on the above approach, the standard fuzzy relationship matrix is stored in the computer as a system database. And experiment data are given to show the fault diagnosis results. The important parameters can be on line sampled and analyzed, and when faults occur, faults can be found, the alarm is given and the controller output is regulated.
文摘Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.
文摘A modified method of design of no-steady-error and anti-disturbance controller is proposed for the design of tank stabilizers. Using a reduced-order observer to estimate its mode, disturbance can be compensated. This enables the system to resist sinusoidal disturbance with any magnitude. Estimate of angular velocity is used as the state feedback to replace the expensive gyro and tachometer generator. The modified method excels the traditional, and provides a new way for the design of tank fire control system. It can also be applied for the design of other servo systems in vehicle and aircraft.
文摘A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.
基金This project was supported by the Aeronautics Foundation of China (00E21022).
文摘Flight simulator is an important device and a typical high-performance position and speed servo system used in the hardware-in-the-loop simulation of flight control system. Friction is the main nonlinear resistance in the flight simulator servo system, especially in a low-speed state. Based on the description of dynamic and static models of a nonlinear Stribeck friction model, this paper puts forward sliding mode controller to overcome the friction, whose stability is
基金Supported by National Key Scientific and Technological Project(Grant No.2010ZX04001-051-031)Key Program of National Natural Science Foundation of China((Grant No.61533014)the Innovative Research Team of Shaanxi Province,China(Grant No.2013KCT-04)
文摘With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking
基金supported by National Natural Science Foundation of China(Grant No.51075291)Shanxi Scholarship Council of China(Grant No.2012-076)
文摘Most current researches working on improving stiffness focus on the application of control theories.But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated,so the control action is lagged.Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms.In this paper,the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed.On this basis,the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward.And a scheme using double servo valves to realize flow feedforward compensation is presented,in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time.The two valves are arranged in parallel to control the cylinder jointly.Furthermore,the model of flow compensation is derived,by which the product of the amplitude and width of the valve’s pulse command signal can be calculated.And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations.Using the proposed scheme,simulations and experiments at different positions with different force changes are conducted.The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time.That is,system dynamic load stiffness is evidently raised.This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.
基金This project is supported by Aeronautics Foundation of China (No.00- E51022).
文摘Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.
基金supported by National Natural Science Foundation of China(Grant No.50835001)Research and Innovation Teams Foundation Project of Ministry of Education of China(Grant No.IRT0610)Liaoning Provincial Key Laboratory Foundation Project of China(Grant No.20060132)
文摘Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.
文摘Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fault localization. The first-stage RBF neural network is adopted as a failure observer to realize the failure detection. The trained RBF observer, working concurrently with the actual system, accepts the input voltage signal to the servo valve and the measurements of the ram displacements, rebuilds the system states, and estimates accurately the output of the system. By comparing the estimated outputs with the actual measurements, the residual signal is generated and then analyzed to report the occurrence of faults. The second-stage RBF neural network can locate the fault occurring through the residual and net parameters of the first-stage RBF observer. Considering the slow convergence speed of the K-means clustering algorithm, an improved K-means clustering algorithm and a self-adaptive adjustment algorithm of learning rate arc presented, which obtain the optimum learning rate by adjusting self-adaptive factor to guarantee the stability of the process and to quicken the convergence. The experimental results demonstrate that the two-stage RBF neural network model is effective in detecting and localizing the failure of the hydraulic position servo system.
基金supported by National Natural Science Foundation of China(Grant No.50575156)Open Fund of the State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University,China(Grant No.GZKF-2008006)
文摘Electro-hydraulic screw down servo system(HSDS) is widely used in seamless tube rolling mill in western companies.But in Chinese companies,mechanical screw down system(MSDS) is popularly equipped and has a serious disadvantage that the roller would often be locked when it is overloaded.For the purpose of designing the first set of domestic twin-roller,four-cylinder and six-framework electro-hydraulic HSDS of seamless tube rolling mill,an experiment system that can simulate the process of seamless tube rolling is constructed.A digital simulation model of the experiment system is built with AMESim software and validated by comparing the simulation results with experiment results.The sudden load response of the screw piston position is studied with the built model and the experiment system.To improve the HSDS's positioning accuracy with large load,a hybrid control scheme of combining load disturbance feedforward compensation(LDFC) method based on servo valve's pressure-stroke feature and anti-saturation integral control(ASIC) is proposed.Both results of simulation and experiment indicate that the transient response time of the single-roller HSDS with the proposed scheme decreases from 0.65 s to less than 0.2 s without static error.To improve the system dynamic stiffness and production qualified rate,a flow rate feedforward compensation(FFC) control strategy based on oil compressibility to dynamic position error is proposed.This FFC strategy is validated with experiments in which the transient error caused by sudden load is reduced to less than 25% of that without FFC.By extending the simulation model to HSDS of a twin-roller,four-cylinder rolling mill,analyzing the mill deformation,and applying the LDFC,ASIC and FFC to the HSDS,the dynamic performance and positioning accuracy of compensated multi-roller HSDS at biting moment are predicted.The research results provide a theoretical and experimental basis for the design of HSDS of seamless steel tube rolling mill.
文摘The usual mixed sensitivity H ∞ design is not suitable for servo design, because there exist pole/zero cancellations and the resulting control law will include a pure differentiation factor. This paper presents an alternative design, i.e. the PS/T two block design. It is proved that in the PS/T problem there is no cancellation of the plant poles by the controller. The PS/T problem can take full advantage of the two block design approach: simplicity and intuition. And the use of PS in design is more practical for it represents the system’s disturbance rejection performance. The PS/T two block design details are discussed and illustrated by an example. The results of this paper can also be used for MIMO systems.
文摘Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.