Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the...Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.展开更多
High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) show excellent application prospects due to its enhanced tolerance of hydrogen impurity.However,the sluggish electrode kinetics caused by its ineffi...High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) show excellent application prospects due to its enhanced tolerance of hydrogen impurity.However,the sluggish electrode kinetics caused by its inefficient electrocatalytic interface and proton transfer severely restricts its performance.To overcome the sluggish electrode kinetics,the ethylenediamine tetramethylenephosphonic acid(EDTMPA) was successfully incorporated into the catalysts layer to regulate the phosphoric acid (PA) distribution to boost the electrocatalytic reaction interface and proton transfer,thus increasing the output power and stability of HT-PEMFCs.The hydrophilic H_(2)PO_(4)^(-) and electron donor N atom of EDTMPA could efficiently decrease the absorption of PA on the catalyst surface and facilitate proton transportation in the membrane electrode,as demonstrated by our experiments.The fuel cell assembled with the prepared membrane electrode shows a high reactivity of 1175 mW cm^(-2)and excellent stability,which is much better than the past reference report.The results of this work provide new insights into the utilization of small molecules with phosphate groups to enhance phosphate tolerance and proton conduction,and there is also a further improvement in the reactivity,durability,and utilization of the electrocatalysts in HT-PEMFCs.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of ...We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of rare earth ion doping amount and doping type on the eNRR performance of the catalyst was explored.The experimental results show that the ammonia yield rate and Faraday efficiency doped with Co_(0.2)Ni_(0.8)-MOF-0.5Ho are the highest,reaching 1.28×10^(-10)mol·s^(-1)·cm^(-2)/39.8%,which is higher than the1.12×10^(-10)mol·s^(-1)·cm^(-2)/32.2%of Co_(0.2)Ni_(0.8)-MOF-74,and is about 14.3%/23.7%higher than that without doping,respectively.And the stability of Co_(0.2)Ni_(0.8)-MOF-0.5 Ho is good(after 80 hours of continuous testing,the current density did not significantly decrease).This is mainly due to doping,which gives Co_(0.2)Ni_(0.8)-MOF-74 a larger specific surface area and catalytic active sites.The catalyst doped at the same time has more metal cation centers,which increases the electron density of the metal centers and enhances the corresponding eNRR performance.展开更多
Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) an...Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.展开更多
In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse fun...In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse functional building blocks.Phenazine-linked organic catalysts,exhibited excellent conjugation,electrical conductivity,chemical,and thermal stability,could bring in N atoms with specific numbers and positions to regulate electron levels,anchor metals,and absorb near-infrared light,which expands solar energy utilization.These advantages of the phenazine-linked catalysts attracted our group and numerous researchers to conduct experimental and computational work on photo/electrocatalytic applications and mechanisms.This review summarizes the recent significant research progress,synthesis methods,photo/electrocatalytic performance,and applications of relative phenazine-linked catalysts.Furthermore,the photo/electrocatalytic mechanism was systematized and summarized by combining experiments and density functional theory calculations simultaneously.展开更多
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv...Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.展开更多
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
Cu-based materials are commonly used in electrocatalytic nitrate reduction reactions(NO 3 RR).NO 3 RR is a“two birds,one stone”approach,simultaneously removing NO 3−pollutants and producing valuable ammonia(NH 3).Ho...Cu-based materials are commonly used in electrocatalytic nitrate reduction reactions(NO 3 RR).NO 3 RR is a“two birds,one stone”approach,simultaneously removing NO 3−pollutants and producing valuable ammonia(NH 3).However,the strong coordination between the NO 3−intermediate and the catalytic active sites seriously hinders the conversion effi ciency.Here,we determined that,through encapsulation strategies,the carbon layer could weaken the NO 3−intermediate binding to active sites,resulting in higher NH 3 yields.We experimentally fabricated electrocatalysts,i.e.,Cu nanoparticles encapsulating(or loaded on)N-doped carbon nanofi bers(NCNFs)called Cu@NCNFs(Cu-NCNFs),using electrostatic spinning.As a result,Cu@NCNFs can achieve NH 3 yields of 17.08 mg/(h·mg cat)at a voltage of−0.84 V and a Faraday effi ciency of 98.15%.Meanwhile,the electrochemical properties of the Cu nanoparticles on the surface of carbon fi bers(Cu-NCNFs)are lower than those of the Cu@NCNFs.The in situ Raman spectra of Cu@NCNFs and Cu-NCNFs under various reduction potentials during the NO 3 RR process show that catalyst encapsulation within carbon layers can eff ectively reduce the adsorption of N species by the catalyst,thus improving the catalytic performance in the nitrate-to-ammonia catalytic conversion process.展开更多
We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nano...We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nanocomposite possessed the electrocatalytic activity of g-C3N4-ZnS and the conductivity of DNA.The presence of DNA was found to enhance the electrocatalytic response of the nanocomposite towards environmental hormones,e.g.pentachlorophenol and nonylphenol,owing to the interaction between g-C3N4-ZnS and DNA,indicating that a stable nanocomposite was formed.The three components showed synergistic effects during electrocatalysis.Electrochemical impedance spectra indicated that the g-C3N4-ZnS-DNA nanocomposite dramatically facilitated the electron transfer of a modified electrode.The co-doping of g-C3N4 film with ZnS and DNA doubled the electrochemical response of the modified electrode in comparison with that of unmodified g-C3N4 film.The detection limits(3 S/N) of pentachlorophenol and nonylphenol were3.3×10^-9 mol L^-1.Meanwhile,we propose a possible Z-scheme mechanism for electron transfer in the g-C3N4-ZnS-DNA nanocomposite and the possible pentachlorophenol and nonylphenol electrocatalytic oxidation mechanism.The g-C3N4-ZnS-DNA nanocomposite-modified electrode was demonstrated to be effective for electrochemical sensing of trace environmental hormones in water samples.展开更多
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det...An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.展开更多
With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property...With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property for electrocatalytic reduction of CO2 in ionic liquid was studied by cyclic voltammogram(CV).The effects of various reaction variables like temperature,working potential and cathode materials on the electrocatalytic performance were also investigated.80%yield of DMC was obtained under the optimal reaction conditions.展开更多
Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterize...Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.展开更多
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using ...In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and current density time curve. It is found that the resultant Pt-Co_3O_4 catalysts with minute amount of Pt exhibite attractive electrocatalytic activity for methanol oxidation reaction(MOR) but with a high resistance CO poisoning due to the synergistic effects from Pt and Co_3O_4. Together with the low manufacturing cost of Co_3O_4, the reported nanostructured Pt-Co_3O_4 catalyst is expected to be a promising electrode material for direct methanol fuel cells(DMFC).展开更多
The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO...The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.展开更多
The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the ...The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the passed charge, the nature of electrodes and the current density(j) on the yield of PC were investigated to optimize the electrolytic conditions, with the maximal yield to be 46.2%, the selectivity of propylene carbonate is 100%. The reduction of propylene oxide in the absence and presence of CO2 was examined by cyclic voltammetry. The mechanism of the reaction initiated by the synergistic effect of halides ions of supporting electrolytes with nucleophilicity and the metal ions from scarification anode with Lewis acid acidity was proposed on the basis of our results.展开更多
Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of th...Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.展开更多
The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal....The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.展开更多
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金supported by the National Natural Science Foundation of China[Nos.U21A20332,52103226,52202275,52203314,and 12204253]the Distinguished Young Scholars Fund of Jiangsu Province[No.BK20220061]the Fellowship of China Postdoctoral Science Foundation[No.2021M702382]。
文摘Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.
基金financially supported by the National Key R&D Program of China (2021YFA 1500900)the National Natural Science Foundation of China (Grant No.:22425021, 22102053)+5 种基金the Provincial Natural Science Foundation of Hunan (2024JJ2012)the Science and Technology Innovation Program of Hunan Province (Grant Nos.2022RC1036)the Top ten Technological Breakthrough Projects in Hunan Province (2023GK1050)the Guangdong Basic and Applied Basic Research Foundation (2024A1515012889)the Shenzhen Science and technology program (JCYJ20210324122209025)the Major Program of the Natural Science Foundation of Hunan Province(2021JC0006)。
文摘High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) show excellent application prospects due to its enhanced tolerance of hydrogen impurity.However,the sluggish electrode kinetics caused by its inefficient electrocatalytic interface and proton transfer severely restricts its performance.To overcome the sluggish electrode kinetics,the ethylenediamine tetramethylenephosphonic acid(EDTMPA) was successfully incorporated into the catalysts layer to regulate the phosphoric acid (PA) distribution to boost the electrocatalytic reaction interface and proton transfer,thus increasing the output power and stability of HT-PEMFCs.The hydrophilic H_(2)PO_(4)^(-) and electron donor N atom of EDTMPA could efficiently decrease the absorption of PA on the catalyst surface and facilitate proton transportation in the membrane electrode,as demonstrated by our experiments.The fuel cell assembled with the prepared membrane electrode shows a high reactivity of 1175 mW cm^(-2)and excellent stability,which is much better than the past reference report.The results of this work provide new insights into the utilization of small molecules with phosphate groups to enhance phosphate tolerance and proton conduction,and there is also a further improvement in the reactivity,durability,and utilization of the electrocatalysts in HT-PEMFCs.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金Funded by the Central Government Guides Local Funds for Scientific and Technological Development(No.2023ZYQ004)the Hunan Provincial Natural Science Foundation of China(No.2021JJ50036)the Hunan Provincial Key Research and Development Plan(No.2023GK2083)。
文摘We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of rare earth ion doping amount and doping type on the eNRR performance of the catalyst was explored.The experimental results show that the ammonia yield rate and Faraday efficiency doped with Co_(0.2)Ni_(0.8)-MOF-0.5Ho are the highest,reaching 1.28×10^(-10)mol·s^(-1)·cm^(-2)/39.8%,which is higher than the1.12×10^(-10)mol·s^(-1)·cm^(-2)/32.2%of Co_(0.2)Ni_(0.8)-MOF-74,and is about 14.3%/23.7%higher than that without doping,respectively.And the stability of Co_(0.2)Ni_(0.8)-MOF-0.5 Ho is good(after 80 hours of continuous testing,the current density did not significantly decrease).This is mainly due to doping,which gives Co_(0.2)Ni_(0.8)-MOF-74 a larger specific surface area and catalytic active sites.The catalyst doped at the same time has more metal cation centers,which increases the electron density of the metal centers and enhances the corresponding eNRR performance.
基金supported by the Tianjin Science and Technology support key projects (20JCYBJC01420)。
文摘Electrocatalytic CO_(2) reduction reaction (eCO_(2)RR) presents a promising approach for harnessing renewable energy and converting greenhouse gas (CO_(2)) into high value-added CO products.N-doped single atom (SA) and atomic-level metal nanocluster (MN) tandem catalysts with rich defects for eCO_(2)RR are reported,which achieved a maximum CO Faraday efficiency (FE_(CO)) of 97.7%(-0.7 V vs.RHE) in the H-type cell and maintained over 95% FE_(CO)at potentials from -0.18 to -0.73 V vs.RHE in the flow cell.Furthermore,the catalyst in the flow cell demonstrated a remarkably low onset potential of-0.14 V vs.RHE and the current density was approximately three times that of the H-type cell.Interestingly,XPS analysis indicates that carbon substrates containing defects have more pyridine-N content.DFT calculations and in-situ attenuated total reflection Fourier transform infrared support this finding by showing that the Ni-(N-C_(2))_(3) active sites with defect favors preferentially convert CO_(2)-to-CO.
基金supported by the Natural Science Foundation of China(52273288 and U2102211)the Natural Science Foundation of Heilongjiang Province of China(LH2021B014)the Fundamental Research Foundation for Universities of Heilongjiang Province(2021-KYYWF-0004).
文摘In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse functional building blocks.Phenazine-linked organic catalysts,exhibited excellent conjugation,electrical conductivity,chemical,and thermal stability,could bring in N atoms with specific numbers and positions to regulate electron levels,anchor metals,and absorb near-infrared light,which expands solar energy utilization.These advantages of the phenazine-linked catalysts attracted our group and numerous researchers to conduct experimental and computational work on photo/electrocatalytic applications and mechanisms.This review summarizes the recent significant research progress,synthesis methods,photo/electrocatalytic performance,and applications of relative phenazine-linked catalysts.Furthermore,the photo/electrocatalytic mechanism was systematized and summarized by combining experiments and density functional theory calculations simultaneously.
基金financially supported by the National Natural Science Foundation of China (22372001)Starting Fund for Scientific Research of High-Level Talents, Anhui Agricultural University (rc382108)+1 种基金Anhui Provincial Key Research and Development Plan (2022e07020037)Innovation and Entrepreneurship Training Program for College Students (X202310364204, S202210364046, X202310364209)
文摘Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22208048,22202174,62001097 and 21576238)the Natural Science Foundation of Heilongjiang Province(No.YQ2022B001)We would like to acknowledge the technical support from Analysis and Testing Center of Northeast Forestry University.
文摘Cu-based materials are commonly used in electrocatalytic nitrate reduction reactions(NO 3 RR).NO 3 RR is a“two birds,one stone”approach,simultaneously removing NO 3−pollutants and producing valuable ammonia(NH 3).However,the strong coordination between the NO 3−intermediate and the catalytic active sites seriously hinders the conversion effi ciency.Here,we determined that,through encapsulation strategies,the carbon layer could weaken the NO 3−intermediate binding to active sites,resulting in higher NH 3 yields.We experimentally fabricated electrocatalysts,i.e.,Cu nanoparticles encapsulating(or loaded on)N-doped carbon nanofi bers(NCNFs)called Cu@NCNFs(Cu-NCNFs),using electrostatic spinning.As a result,Cu@NCNFs can achieve NH 3 yields of 17.08 mg/(h·mg cat)at a voltage of−0.84 V and a Faraday effi ciency of 98.15%.Meanwhile,the electrochemical properties of the Cu nanoparticles on the surface of carbon fi bers(Cu-NCNFs)are lower than those of the Cu@NCNFs.The in situ Raman spectra of Cu@NCNFs and Cu-NCNFs under various reduction potentials during the NO 3 RR process show that catalyst encapsulation within carbon layers can eff ectively reduce the adsorption of N species by the catalyst,thus improving the catalytic performance in the nitrate-to-ammonia catalytic conversion process.
基金supported by the National Natural Science Foundation of China (21471122)Graduate Student Education Innovation Fundation and President Foundation of Wuhan Institute of Technology (CX2015147, 2016062)~~
文摘We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nanocomposite possessed the electrocatalytic activity of g-C3N4-ZnS and the conductivity of DNA.The presence of DNA was found to enhance the electrocatalytic response of the nanocomposite towards environmental hormones,e.g.pentachlorophenol and nonylphenol,owing to the interaction between g-C3N4-ZnS and DNA,indicating that a stable nanocomposite was formed.The three components showed synergistic effects during electrocatalysis.Electrochemical impedance spectra indicated that the g-C3N4-ZnS-DNA nanocomposite dramatically facilitated the electron transfer of a modified electrode.The co-doping of g-C3N4 film with ZnS and DNA doubled the electrochemical response of the modified electrode in comparison with that of unmodified g-C3N4 film.The detection limits(3 S/N) of pentachlorophenol and nonylphenol were3.3×10^-9 mol L^-1.Meanwhile,we propose a possible Z-scheme mechanism for electron transfer in the g-C3N4-ZnS-DNA nanocomposite and the possible pentachlorophenol and nonylphenol electrocatalytic oxidation mechanism.The g-C3N4-ZnS-DNA nanocomposite-modified electrode was demonstrated to be effective for electrochemical sensing of trace environmental hormones in water samples.
基金supported by the National Natural Science Foundation of China(21007033)the Fundamental Research Funds of Shandong University(2015JC017)~~
文摘An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
基金the National Natural Science Foundation of China(No.20976197) for its financial support of this project
文摘With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property for electrocatalytic reduction of CO2 in ionic liquid was studied by cyclic voltammogram(CV).The effects of various reaction variables like temperature,working potential and cathode materials on the electrocatalytic performance were also investigated.80%yield of DMC was obtained under the optimal reaction conditions.
基金the Fund of the Natural Science of Guangxi (0731015)
文摘Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
基金supported by National Natural Science Foundation of China (Grant No. 21273192, 91023010, 61204009, 21303153)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant No. 104100510001)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (2008 HASTIT016)Henan Province Science and Technology Key Project (Grant No. 082102230036 and 122102210479)
文摘In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and current density time curve. It is found that the resultant Pt-Co_3O_4 catalysts with minute amount of Pt exhibite attractive electrocatalytic activity for methanol oxidation reaction(MOR) but with a high resistance CO poisoning due to the synergistic effects from Pt and Co_3O_4. Together with the low manufacturing cost of Co_3O_4, the reported nanostructured Pt-Co_3O_4 catalyst is expected to be a promising electrode material for direct methanol fuel cells(DMFC).
基金the 11th Five-Year Supporting Programs of Science and Technology (No. 2006BAD04A12)
文摘The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.
基金Supported by the National Natural Science Foundation of China(No.20973065)the Fund of Basic Research in Natural Science Issued by Shanghai Municipal Committee of Science+4 种基金 China(No.08dj1400100)the Shanghai Leading Project China (No.B409)the Foundation of Outstanding Young Talent in University of Anhui Province China No.2010SQRL042)
文摘The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the passed charge, the nature of electrodes and the current density(j) on the yield of PC were investigated to optimize the electrolytic conditions, with the maximal yield to be 46.2%, the selectivity of propylene carbonate is 100%. The reduction of propylene oxide in the absence and presence of CO2 was examined by cyclic voltammetry. The mechanism of the reaction initiated by the synergistic effect of halides ions of supporting electrolytes with nucleophilicity and the metal ions from scarification anode with Lewis acid acidity was proposed on the basis of our results.
文摘Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.
基金Sponsored by Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2013ZX07201007)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0795)
文摘The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.