期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
Boosting the Performance Gain of Ru/C for Hydrogen Evolution Reaction Via Surface Engineering 被引量:1
1
作者 Xiaobing Bao Yuzhuo Chen +3 位作者 Shanjun Mao Yong Wang Yong Yang Yutong Gong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期415-424,共10页
The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous elec... The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous electronic structures while it suffers from severe dissolution and stability problems.Herein,the modification of Ru/C with atomically dispersed cobalt atoms is achieved via a simple thermal doping method.The newly formed amorphous shell with Ru-Co sites on the Ru/C catalyst improved the hydrogen evolution reaction activity and stability significantly.Impressively,the obtained Co1Ru@Ru/CN_(x)catalyst exhibited an overpotential as low as 30 mV at 10 mA cm^(-2)in an alkaline medium,which is among the best HER catalysts reported so far.The oxygen oxophile Co prevents the fast oxidation and dissolution of Ru species,ensuring outstanding long-term durability up to 70 h.Theoretical calculations reveal that the Ru-Co coordination acts as a more active site for water dissociation than the Ru-Ru.Meanwhile,the"Ru-Co shell/Ru core"structures show high adaptability for the reaction conditions.This simple doping strategy offers prospects for scalable preparation of highly active electrocatalysts. 展开更多
关键词 high performance hydrogen evolution reaction ruthenium catalyst surface engineering
下载PDF
Towards a new avenue for rapid synthesis of electrocatalytic electrodes via laser-induced hydrothermal reaction for water splitting
2
作者 Yang Sha Menghui Zhu +6 位作者 Kun Huang Yang Zhang Francis Moissinac Zhizhou Zhang Dongxu Cheng Paul Mativenga Zhu Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期340-351,共12页
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ... Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production. 展开更多
关键词 electrocatalytic electrode laser-induced hydrothermal reaction NiFe layered double hydroxides hydrogen evolution reaction water splitting energy consumption production rate
下载PDF
Electrocatalytic and photocatalytic performance of noble metal doped monolayer MoS2 in the hydrogen evolution reaction: A first principles study 被引量:4
3
作者 Zheng Zhang Kai Chen +2 位作者 Qiang Zhao Mei Huang Xiaoping Ouyang 《Nano Materials Science》 CAS CSCD 2021年第1期89-94,共6页
To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)usi... To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)using first principles calculation combined with the climbing image nudged elastic band method.We find the band gap of the monolayer MoS_(2) is reduced significantly by the noble metal doping,which is unfavorable to improving its photocatalytic performance.The optical absorption coefficient shows that the doping does not increase the ability of the monolayer MoS_(2) to absorb visible light.The monolayer MoS_(2) doped with the noble metal is not a potential photocatalyst for the hydrogen evolution reaction because the band edge position of the conduction band minimum is lower than-4.44 eV,the reduction potential of H^(+)/H_(2).Fortunately,the band gap reduction increases the electron transport performance of the monolayer MoS_(2),and the activation energy of water splitting is greatly reduced by the noble metal doping,especially the Pt doping.On the whole,noble metal doping can enhance the electrocatalytic performance of the monolayer MoS_(2). 展开更多
关键词 electrocatalytic Monolayer MoS2 Noble metal doping hydrogen evolution reaction First principles calculation
下载PDF
Metal-organic framework derived NiFe_(2)O_(4)/FeNi_(3)@C composite for efficient electrocatalytic oxygen evolution reaction
4
作者 Fangna Dai Zhifei Wang +6 位作者 Huakai Xu Chuanhai Jiang Yuguo Ouyang Chunyu Lu Yuan Jing Shiwei Yao Xiaofei Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1914-1921,共8页
Reducing the cost and improving the electrocatalytic activity are the key to developing high efficiency electrocatalysts for oxygen evolution reaction(OER).Here,bimetallic NiFe-based metal-organic framework(MOF)was pr... Reducing the cost and improving the electrocatalytic activity are the key to developing high efficiency electrocatalysts for oxygen evolution reaction(OER).Here,bimetallic NiFe-based metal-organic framework(MOF)was prepared by solvothermal method,and then used as precursor to prepare NiFe-based MOF-derived materials by pyrolysis.The effects of different metal ratios and pyrolysis temperatures on the sample structure and OER electrocatalytic performance were investigated and compared.The experimental results showed that when the metal molar ratio was Fe:Ni=1:5 and the pyrolysis temperature was 450℃,the sample(FeNi_(5)-MOF-450)exhibits a composite structure of Ni Fe_(2)O_(4)/FeNi_(3)/C and owns the superior electrocatalytic activity in OER.When the current density is 100 mA·cm^(-2),the overpotential of the sample was 377 mV with Tafel slope of 56.2 mV·dec^(-1),which indicates that FeNi_(5)-MOF-450 exhibits superior electrocatalytic performance than the commercial RuO_(2).Moreover,the long-term stability of FeNi_(5)-MOF-450 further promotes its development in OER.This work demonstrated that the regulatory methods such as component optimization can effectively improve the OER catalytic performance of NiFe-based MOF-derived materials. 展开更多
关键词 metal-organic framework derivatives NiFe-based electrocatalysts electrocatalytic performance oxygen evolution reaction
下载PDF
Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides 被引量:8
5
作者 Wenli Yu Yuxiao Gao +3 位作者 Zhi Chen Ying Zhao Zexing Wu Lei Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第11期1876-1902,共27页
Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via el... Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development. 展开更多
关键词 Metal phosphides electrocatalytic reaction hydrogen evolution reaction Synthesis strategies hydrogen energy
下载PDF
Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction 被引量:11
6
作者 Yingjie Yang Yanhui Yu +9 位作者 Jing Li Qingrong Chen Yanlian Du Peng Rao Ruisong Li Chunman Jia Zhenye Kang Peilin Deng Yijun Shen Xinlong Tian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期288-307,共20页
The investigation of highly effective,durable,and cost-effective electrocatalysts for the hydrogen evolution reaction(HER)is a prerequisite for the upcoming hydrogen energy society.To establish a new hydrogen energy s... The investigation of highly effective,durable,and cost-effective electrocatalysts for the hydrogen evolution reaction(HER)is a prerequisite for the upcoming hydrogen energy society.To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy,electrochemical water-splitting is considered the most promising,environmentally friendly,and efficient way to produce pure hydrogen.Compared with the commonly used platinum(Pt)-based catalysts,ruthenium(Ru)is expected to be a good alternative because of its similar hydrogen bonding energy,lower water decomposition barrier,and considerably lower price.Analyzing and revealing the HER mechanisms,as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable.In this review,the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced.Moreover,four major strategies to improve the performance of Ru-based electrocatalysts,including electronic effect modulation,support engineering,structure design,and maximum utilization(single atom)are discussed.Finally,the challenges,solutions and prospects are highlighted to prompt the practical applications of Rubased electrocatalysts for HER. 展开更多
关键词 hydrogen evolution reaction Ruthenium-based catalysts performance Electrochemical water splitting
下载PDF
Synergistic Effect of Dual-Doped Carbon on MO_(2)C Nanocrystals Facilitates Alkaline Hydrogen Evolution 被引量:1
7
作者 Min Zhou Xiaoli Jiang +4 位作者 Weijie Kong Hangfei Li Fei Lu Xin Zhou Yagang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期101-111,共11页
Molybdenum carbide(MO_(2)C)materials are promising electrocatalysts with potential applications in hydrogen evolution reaction(HER)due to low cost and Pt-like electronic structures.Nevertheless,their HER activity is u... Molybdenum carbide(MO_(2)C)materials are promising electrocatalysts with potential applications in hydrogen evolution reaction(HER)due to low cost and Pt-like electronic structures.Nevertheless,their HER activity is usually hindered by the strong hydrogen binding energy.Moreover,the lack of water-cleaving site's makes it difficult for the catalysts to work in alkaline solutions.Here,we designed and synthesized a B and N dual-doped carbon layer that encapsulated on MO_(2)C nanocrystals(MO_(2)C@BNC)for accelerating HER under alkaline condition.The electronic interactions between the MO_(2)C nanocrystals and the multiple-doped carbon layer endow a near-zero H adsorption Gibbs free energy on the defective C atoms over the carbon shell.Meanwhile,the introduced B atoms afford optimal H_2O adsorption sites for the water-cleaving step.Accordingly,the dual-doped MO_(2)C catalyst with synergistic effect of non-metal sites delivers superior HER performances of a low overpotential(99 mV@10 mA cm^(-2))and a small Tafel slope(58.1 mV dec^(-1))in 1 M KOH solution.Furthermore,it presents a remarkable activity that outperforming the commercial 10%Pt/C catalyst at large current density,demonstrating its applicability in industrial water splitting.This study provides a reasonable design strategy towards noble-metal-free HER catalysts with high activity. 展开更多
关键词 Molybdenum carbide hydrogen evolution reaction Dual-doped Synergistic effect Superior performances
下载PDF
Enhanced hydrogen evolution reaction in Sr doped BiFeO_(3) by achieving the coexistence of ferroelectricity and ferromagnetism at room temperature 被引量:2
8
作者 Ji Qi Huan Liu +5 位作者 Ming Feng Hang Xu Haiwei Liu Chen Wang Aopei Wang Weiming Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期93-98,I0004,共7页
The perovskite transition metal oxide(TMO) has been considered in electrocatalysis for the modern clean energy technologies as its high electrochemical activity and low cost. The atomic scale engineering to the local ... The perovskite transition metal oxide(TMO) has been considered in electrocatalysis for the modern clean energy technologies as its high electrochemical activity and low cost. The atomic scale engineering to the local stoichiometry of single crystal TMO provides a clue of the relation between electronic structure and catalytic performance. Here we report a hydrogen evolution reaction(HER) activity enhancement ~ 1761% of Bi_(0.85)Sr_(0.15)FeO_3 compared to the pure BiFeO_3. By the systemic investigation of the Sr doping level of Bi_(1-x)Sr_xFeO_3(BSFO), it is found that the HER enhancement originates from the improvement of ferromagnetism of BSFO without obvious scarification of the ferroelectricity at the room temperature. The multiple ferroic orderings in BSFO are beneficial for HER activity, which offers the strengthen of hybridization of Fe 3d and O2 p orbitals from the view of ferromagnetism, and the assistance of electron drift by spontaneous electric polarization. Our study not only affords the strategy of developing multiple ferroic orderings in TMO, but also facilitates the atomic scale understanding of the improved HER activity. 展开更多
关键词 Perovskite transition metal oxide hydrogen evolution reaction Substitution engineering Electron cloud overlap Electrochemical performance
下载PDF
Electrochemical synthesis of trimetallic nickel-iron-copper nanoparticles via potential-cycling for high current density anion exchange membrane water-splitting applications
9
作者 Ziqi Zhang Sheng Wan +4 位作者 Hanbo Wang Jinghan He Ruige Zhang Yuhang Qi Haiyan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期535-542,I0012,共9页
Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to... Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts. 展开更多
关键词 electrocatalytic water splitting hydrogen evolution reaction Oxygen evolution reaction Electrochemical synthesis Anion exchange membrane
下载PDF
Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media
10
作者 Ping Wang Ting Wang +6 位作者 Ming Xu Ze Gao Hongyu Li Bowen Li Yuqi Wang Chaoqun Qu Ming Feng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期524-528,共5页
Rationally designed novel cost-effective hydrogen evolution reaction(HER)electrocatalysts with controlled surface composition and advanced structural superiority is extremely critical to optimize the HER performance.P... Rationally designed novel cost-effective hydrogen evolution reaction(HER)electrocatalysts with controlled surface composition and advanced structural superiority is extremely critical to optimize the HER performance.Polyoxometalates(POMs)with structural diversity and adjustable element compositions represent a promising precursor for rational design and preparation of HER electrocatalysts.Herein,a series of transition metal-doped MoS_(2)materials with different surface engineered structures(Fe,Cr,V doping and S vacancies)(M-MoS_(2)/CC,M=Fe,Cr and V)were fabricated by a simple hydrothermalvulcanization strategy using Keplerate polyoxomolybdate nanoball({Mo_(72)Fe_(30)},{Mo_(72)Cr_(30)},{Mo_(72)V_(30)},{Mo_(132)})as precursors.The enlarged interlayer spacing as well as the integration of homogeneous transition metal doping and abundant sulfur vacancies endows prepared M-MoS_(2)/CC with superior HER electrocatalytic performance and excellent long-term working stability in both acidic and alkaline media.The optimized Fe-MoS_(2)/CC afford current densities of 10 and 50 mA/cm^(2)at overpotentials of 188/272 mV and 194/394 mV in 0.5 mol/L H_(2)SO_(4)and 1.0 mol/L KOH aqueous solution,respectively,outperforming most of reported typical transition metal sulfide-based catalysts.This work represents an important breakthrough for POMs-mediated highly efficient transition metal sulfide-based HER electrocatalysts with wide range pH activity and may provide new options for the rational design of promising HER electrocatalysts and beyond. 展开更多
关键词 POLYOXOMETALATE electrocatalytic hydrogen evolution reaction Doping MoS_(2)
原文传递
The“mediated molecular”-assisted construction of Mo_(2)N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction 被引量:1
11
作者 Fanyi Kong Aiping Wu +3 位作者 Siyu Wang Xinhui Zhang Chungui Tian Honggang Fu 《Nano Research》 SCIE EI CSCD 2023年第8期10857-10866,共10页
The rational design of the catalysts with easily-accessible surface and high intrinsic activity is desirable for electrocatalytic hydrogen evolution reaction(HER).Here,we reported the construction of two-dimensional(2... The rational design of the catalysts with easily-accessible surface and high intrinsic activity is desirable for electrocatalytic hydrogen evolution reaction(HER).Here,we reported the construction of two-dimensional(2D)Co-Mo nitrides based heterojunctional catalyst for efficient HER based on a“mediated molecular”assisted route.The 2D Co(OH)_(2)sheet reacted partially with the“mediated molecular”(2-methylimidazole(2-MIM))to form zeolitic imidazolate framework(ZIF)-67 at surface,giving ZIF-67/Co(OH)_(2)sheets.The ZIF-67 combines with[PMo_(12)O_(40)]^(3−)cluster(PMo_(12))due to the interaction of mediated molecular with PMo_(12),producing 2D Mo-Co-2MIM/Co(OH)_(2)bimetallic precursor.After controlled nitriding,the Mo_(2)N islands dispersed on 2D porous Co-based sheets were formed.A series of characterizations and density functional theory(DFT)calculation indicated the formation of a close contact interface,which promotes the electron transfer between Mo and Co components,enhances the electron migration/redistribution and redistribution and down-shift of d-band center and thus gives a high intrinsic activity.The 2D characteristics make the catalyst more accessible contact sites,which is favourable to promot the HER.The tests showed that the optimized catalyst exhibits an onset potential of 0 mV and an overpotential of 10 mA·cm^(−2)at 35.0 mV,which is quite close to that of Pt/C catalyst.It also exhibits an activity superior to Pt/C at high current density(>100 mA·cm^(−2)).A good stability of the catalyst was achieved with no significant decay for 100 h of continuous operation.The electrolytic cell composed of optimized catalyst and P-NiFe-layered double hydroxide(LDH)can be driven by low voltage(only 1.47 V)to reach a current density of 10 mA·cm^(−2). 展开更多
关键词 two-dimensional heterojunctions nitrides polyoxometalates(POMs) zeolitic imidazole framework-67(ZIF-67) electrocatalytic hydrogen evolution reaction(HER)
原文传递
Electrocatalytic characterization of Ni-Fe-TiO_(2) overlayers for hydrogen evolution reaction in alkaline solution
12
作者 Jing-Guo Zhang Qiang Hu +5 位作者 Shao-Ming Zhang Shuo Li Fei Ma Fan-Cai Chen Ya-Ling Wang Li-Min Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第6期1858-1864,共7页
The Ni-Fe-TiO_(2) overlayers on mild steel strips were prepared by electrochemical deposition.The layers were characterized morphologically by confocal laser scanning microscopy and scanning electron microscopy(SEM) c... The Ni-Fe-TiO_(2) overlayers on mild steel strips were prepared by electrochemical deposition.The layers were characterized morphologically by confocal laser scanning microscopy and scanning electron microscopy(SEM) coupled with energy-dispersive spectroscopy(EDS)analysis.The layers exhibit a quasi-three-dimensional(3D)morphology in which the crystalline,TiO_(2),is embedded.Electrocatalytic activity of the Ni-Fe-TiO_(2) layers for the hydrogen evolution reaction(HER) was assessed by using pseudo-steady-state polarization curves and electrochemical impedance spectroscopy(EIS) in alkaline solution.The results were compared with the properties of Ni-Fe electrodes and used for determining the mechanism and kinetics of HER.In comparison with Ni-Fe electrodes,the synthesized Ni-Fe-TiO_(2) electrodes present higher catalytic activity for HER due to the increase in the real surface area and high intrinsic elec trocatalytic activity of titanium dioxide.The present study provides valuable insight for exploring practical applications of Ni-based alloys as hydrogen evolution electrodes. 展开更多
关键词 Ni-Fe-TiO_(2) hydrogen evolution reaction ELECTRODEPOSITION electrocatalytic activity
原文传递
Recent Advance in Electrocatalytic Water Splitting for Hydrogen Production by Layered Double Hydroxides
13
作者 XIA Tian REN Qinghui +3 位作者 YANG Jiangrong LI Zhenhua SHAO Mingfei DUAN Xue 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第4期577-589,共13页
Collecting green hydrogen(H2)from water splitting driven by renewable energy is a new competition to implement the construction of H2 energy industry and promote new economic growth for global governments.The common s... Collecting green hydrogen(H2)from water splitting driven by renewable energy is a new competition to implement the construction of H2 energy industry and promote new economic growth for global governments.The common strategy to enhance the efficiency of H2 production is to reduce the potential of electrolytic cell that is the mainstream way to prepare efficient electrocatalysts.Layered double hydroxides(LDHs)are one of the most active electrocatalysts with adjustable active sites in contemporary research.In this review,we discuss the recent advanced progress of LDHs for hydrogen evolution reaction(HER)on cathode and oxygen evolution reaction(OER)or organic oxidation on anode and emphasize the influence of LDHs structure regulation in water electrolysis process(HER/OER)as well as the current development status of organic oxidation catalyzed by active oxygen species on anode.Finally,we propose the current challenges of LDHs in electrocatalysis and prospect their developing tendency and further application. 展开更多
关键词 Layered double hydroxide hydrogen production hydrogen evolution reaction(HER) Oxygen evolution reaction(OER) electrocatalytic organic oxidation
原文传递
Highly dispersed few-layer MoS_2 nanosheets on S, N co-doped carbon for electrocatalytic H_2 production 被引量:2
14
作者 Shixin Hua Dan Qu +5 位作者 Li An Guangcheng Xi Ge Chen Fan Li Zhijun Zhou Zaicheng Sun 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期1028-1037,共10页
Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity... Ultrathin small MoS2nanosheets exhibit a higher electrocatalytic activity for the hydrogen evolution reaction.However,strong interactions between MoS2layers may result in aggregation;together with the low conductivity of MoS2,this may lower its electrocatalytic activity.In this paper we present a method that we developed to directly produce solid S,N co‐doped carbon(SNC)with a graphite structure and multiple surface groups through a hydrothermal route.When Na2MoO4was added to the reaction,polymolybdate could be anchored into the carbon materials via a chemical interaction that helps polymolybdate disperse uniformly into the SNC.After a high temperature treatment,polymolybdate transformed into MoS2at800°C for6h in a N2atmosphere at a heating rate of5°C/min,owing to S2?being released from the SNC during the treatment(denoted as MoS2/SNC‐800‐6h).The SNC effectively prevents MoS2from aggregating into large particles,and we successfully prepared highly dispersed MoS2in the SNC matrix.Electrochemical characterizations indicate that MoS2/SNC‐900‐12h exhibits a low onset potential of115mV and a low overpotential of237mV at a current density of10mA/cm2.Furthermore,MoS2/SNC‐900‐12h also had an excellent stability with only^2.6%decay at a current density of10mA/cm2after5000test cycles. 展开更多
关键词 MoS2 nanosheet S N co‐doped carbon electrocatalytic hydrogen production Composite hydrogen evolution reaction
下载PDF
BEHAVIOR OF POLYPYRROLE MODIFIED GRAPHITE ELECTRODE DURING HYDROGEN EVOLUTION PROCESS
15
作者 莫笑萍 王纪孝 +1 位作者 王志 王世昌 《化工学报》 EI CAS CSCD 北大核心 2003年第5期710-712,共3页
关键词 聚吡咯 石墨电极 修饰电极 氢化反应 氢气 制备 电解析氢
下载PDF
电催化水分解催化剂的研究进展 被引量:1
16
作者 陈岳飞 肖克 +2 位作者 王朝阳 朱日龙 邹军 《石油与天然气化工》 CAS CSCD 北大核心 2024年第2期62-70,共9页
为了解决工业革命带来的能源短缺和环境污染问题,亟需寻找可持续、清洁、高效的能源,氢气的燃烧产物只有水,是一种可替代化石燃料的无污染、可再生的理想清洁能源。通过电催化水分解制氢可实现零碳排放,被认为是最清洁和可持续的方法。... 为了解决工业革命带来的能源短缺和环境污染问题,亟需寻找可持续、清洁、高效的能源,氢气的燃烧产物只有水,是一种可替代化石燃料的无污染、可再生的理想清洁能源。通过电催化水分解制氢可实现零碳排放,被认为是最清洁和可持续的方法。总结了电催化析氢反应和析氧反应催化剂的研究进展,概述了其内在反应原理以及提高催化剂电催化水分解性能的设计方法,从贵金属基催化剂和非贵金属催化剂两方面展开讨论,介绍了增强催化剂电催化水分解活性的方法及目前催化剂面临的挑战,并对研究前景进行了展望。 展开更多
关键词 电催化水分解 制氢 电催化剂 析氢反应 析氧反应
下载PDF
PtIr/CF双功能电极在氨水制氢中的电催化性能研究
17
作者 王中华 郑淞生 +4 位作者 周安游 崔伟 吴梦洁 姚育栋 王兆林 《现代化工》 CAS CSCD 北大核心 2024年第1期106-113,共8页
以碳纤维纸(Carbon Fiber,CF)为基底,通过可控电沉积制备了PtIr/CF双功能催化电极,并对其在氨水制氢中的电催化性能进行研究。结果表明,Pt、Ir均匀沉积在基底纤维骨架上,呈花簇状分布,表面形成的针形纳米枝晶为催化反应提供丰富的活性位... 以碳纤维纸(Carbon Fiber,CF)为基底,通过可控电沉积制备了PtIr/CF双功能催化电极,并对其在氨水制氢中的电催化性能进行研究。结果表明,Pt、Ir均匀沉积在基底纤维骨架上,呈花簇状分布,表面形成的针形纳米枝晶为催化反应提供丰富的活性位点。当其用作氨氧化反应(Ammonia Oxidation Reaction,AOR)的阳极时,在1.5 mol/L KOH+1.5 mol/L NH_(3)的混合电解液中,PtIr/CF催化电极显示出0.39 V(vs.RHE)的AOR起始电位和134.4 mA/cm^(2)的电流密度;而当其作为阴极用于析氢反应(Hydrogen Evolution Reaction,HER)时,PtIr/CF催化电极在0.121 V(vs.RHE)的电压下实现了100 mA/cm^(2)的析氢性能,并显示出优于Pt/CF电极的电催化性能和稳定性。 展开更多
关键词 氨氧化反应 析氢反应 电催化 双功能电极 氨制氢
下载PDF
Co基金属有机框架及其衍生材料的电催化析氢研究进展
18
作者 贾伟科 王群 +2 位作者 苏骑 龚向宇 王际平 《化工新型材料》 CAS CSCD 北大核心 2024年第1期71-76,共6页
电催化裂解水产氢是一种可持续的环保能源储存技术,也是降低碳排放的重要手段。金属有机框架(MOFs)因具有比表面积大、孔隙率可调、结构调整多样化及修饰策略简易等优点,从而在电催化析氢领域引起了研究者的广泛关注。综述了Co基金属有... 电催化裂解水产氢是一种可持续的环保能源储存技术,也是降低碳排放的重要手段。金属有机框架(MOFs)因具有比表面积大、孔隙率可调、结构调整多样化及修饰策略简易等优点,从而在电催化析氢领域引起了研究者的广泛关注。综述了Co基金属有机框架(Co-MOFs)及其衍生材料的制备方法、结构调节,以及微观结构对催化活性、催化稳定性和析氢能力的影响。结果表明:Co-MOFs及其衍生材料较传统催化剂表现出更加优异的电化学析氢活性。此外,提出了高性能催化剂的设计策略,并对其在电催化析氢领域的应用前景进行了展望。 展开更多
关键词 Co-MOFs 衍生物 电催化 析氢反应
下载PDF
Ru负载Co_(3)O_(4)催化剂的制备及其电解糠醛性能研究
19
作者 杜康健 彭智昆 《郑州大学学报(理学版)》 CAS 北大核心 2024年第3期88-94,共7页
近年来,过渡金属基催化剂(TMOs)在探索高性能的糠醛氧化方面备受关注,但较低的本征活性限制其应用,合理优化TMOs的电子结构是提高糠醛氧化催化性能的有效策略。采用电沉积和浸渍法成功制备了Ru-Co_(3)O_(4)/CP催化剂,并通过电化学测试评... 近年来,过渡金属基催化剂(TMOs)在探索高性能的糠醛氧化方面备受关注,但较低的本征活性限制其应用,合理优化TMOs的电子结构是提高糠醛氧化催化性能的有效策略。采用电沉积和浸渍法成功制备了Ru-Co_(3)O_(4)/CP催化剂,并通过电化学测试评价FOR和HER的催化性能。在1.0 mol/L KOH溶液中加入50 mmol/L糠醛后,Ru-Co_(3)O_(4)/CP催化剂达到10 mA/cm^(2)电流密度仅需要1.41 VRHE,与不加糠醛相比,降低了100 mV。以Ru-Co_(3)O_(4)/CP为阴极和阳极的催化剂构筑两电极电解槽,与全解水相比,电解糠醛在达到30 mA/cm^(2)的电流密度所需要的电解电压降低了60 mV,同时在阴极和阳极得到了高价值的H_(2)和糠酸。 展开更多
关键词 糠醛 电催化氧化 析氢反应
下载PDF
Engineering active Ni-doped Co_(2)P catalyst for efficient electrooxidation coupled with hydrogen evolution 被引量:1
20
作者 Jiayi Li Xin Mao +5 位作者 Wanbing Gong Xinyu Wang Yawen Jiang Ran Long Aijun Du Yujie Xiong 《Nano Research》 SCIE EI CSCD 2023年第5期6728-6735,共8页
The thermodynamically favorable electrocatalytic oxidation coupled with hydrogen evolution reaction(HER)is considered as a sustainable and promising technique.Nonetheless,it remains a great challenge due to the lack o... The thermodynamically favorable electrocatalytic oxidation coupled with hydrogen evolution reaction(HER)is considered as a sustainable and promising technique.Nonetheless,it remains a great challenge due to the lack of simple,cheap,highefficient electrocatalysts.Here,we successfully develop a simple and scalable electro-deposition and subsequent phosphorization route to fabricate Ni-doped Co_(2)P(Ni-Co_(2)P)nanosheets catalyst using the in-situ released Ni species from defective Ni foam as metal source.Impressively,the as-synthesized Ni-Co_(2)P catalyst exhibits excellent electrochemical 5-hydroxymethylfurfural oxidation reaction(HOR)performance with>99%2,5-furandicarboxylic acid yield and>97%Faradaic efficiency at an ultralow potential of 1.29 V vs.reversible hydrogen electrode(RHE).Experimental characterization and theoretical calculation reveal that the atomically doped Ni species can enhance the adsorption of reactant and thus lower the reaction energy barriers.By coupling the electrocatalytic HOR with HER,the employed two-electrode system using Ni-Co_(2)P and commercial Ni foam as anode and cathode,respectively,exhibits a low cell voltage of 1.53 V to drive a current density of 10 mA·cm^(−2),which is 90 mV lower than that of pure water splitting.This work provides a facile and efficient approach for the preparation of high-performance earth-abundant electrocatalysts toward the concurrent production of H_(2)and value-added chemicals. 展开更多
关键词 heteroatomic doping phosphide electrodes electrocatalytic oxidation hydrogen evolution reaction biomass conversion
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部