Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the...Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse fun...In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse functional building blocks.Phenazine-linked organic catalysts,exhibited excellent conjugation,electrical conductivity,chemical,and thermal stability,could bring in N atoms with specific numbers and positions to regulate electron levels,anchor metals,and absorb near-infrared light,which expands solar energy utilization.These advantages of the phenazine-linked catalysts attracted our group and numerous researchers to conduct experimental and computational work on photo/electrocatalytic applications and mechanisms.This review summarizes the recent significant research progress,synthesis methods,photo/electrocatalytic performance,and applications of relative phenazine-linked catalysts.Furthermore,the photo/electrocatalytic mechanism was systematized and summarized by combining experiments and density functional theory calculations simultaneously.展开更多
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv...Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.展开更多
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nano...We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nanocomposite possessed the electrocatalytic activity of g-C3N4-ZnS and the conductivity of DNA.The presence of DNA was found to enhance the electrocatalytic response of the nanocomposite towards environmental hormones,e.g.pentachlorophenol and nonylphenol,owing to the interaction between g-C3N4-ZnS and DNA,indicating that a stable nanocomposite was formed.The three components showed synergistic effects during electrocatalysis.Electrochemical impedance spectra indicated that the g-C3N4-ZnS-DNA nanocomposite dramatically facilitated the electron transfer of a modified electrode.The co-doping of g-C3N4 film with ZnS and DNA doubled the electrochemical response of the modified electrode in comparison with that of unmodified g-C3N4 film.The detection limits(3 S/N) of pentachlorophenol and nonylphenol were3.3×10^-9 mol L^-1.Meanwhile,we propose a possible Z-scheme mechanism for electron transfer in the g-C3N4-ZnS-DNA nanocomposite and the possible pentachlorophenol and nonylphenol electrocatalytic oxidation mechanism.The g-C3N4-ZnS-DNA nanocomposite-modified electrode was demonstrated to be effective for electrochemical sensing of trace environmental hormones in water samples.展开更多
An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) det...An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.展开更多
With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property...With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property for electrocatalytic reduction of CO2 in ionic liquid was studied by cyclic voltammogram(CV).The effects of various reaction variables like temperature,working potential and cathode materials on the electrocatalytic performance were also investigated.80%yield of DMC was obtained under the optimal reaction conditions.展开更多
Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterize...Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.展开更多
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using ...In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and current density time curve. It is found that the resultant Pt-Co_3O_4 catalysts with minute amount of Pt exhibite attractive electrocatalytic activity for methanol oxidation reaction(MOR) but with a high resistance CO poisoning due to the synergistic effects from Pt and Co_3O_4. Together with the low manufacturing cost of Co_3O_4, the reported nanostructured Pt-Co_3O_4 catalyst is expected to be a promising electrode material for direct methanol fuel cells(DMFC).展开更多
The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO...The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.展开更多
The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the ...The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the passed charge, the nature of electrodes and the current density(j) on the yield of PC were investigated to optimize the electrolytic conditions, with the maximal yield to be 46.2%, the selectivity of propylene carbonate is 100%. The reduction of propylene oxide in the absence and presence of CO2 was examined by cyclic voltammetry. The mechanism of the reaction initiated by the synergistic effect of halides ions of supporting electrolytes with nucleophilicity and the metal ions from scarification anode with Lewis acid acidity was proposed on the basis of our results.展开更多
Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of th...Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.展开更多
The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal....The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.展开更多
A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-Ir...A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).展开更多
As a secondary energy with great commercialization potential,hydrogen energy has been widely studied due to the high calorific value,clean combustion products and various reduction methods.At present,the blueprint of ...As a secondary energy with great commercialization potential,hydrogen energy has been widely studied due to the high calorific value,clean combustion products and various reduction methods.At present,the blueprint of hydrogen energy economy in the world is gradually taking shape.Compared with the traditional high-energy consuming methane steam reforming hydrogen production method,the electrocatalytic water splitting hydrogen production stands out among other process of hydrogen production owning to the mild reaction conditions,high-purity hydrogen generation and sustainable production process.Basing on current technical economy situation,the highly electric power cost limits the further promotion of electrocatalytic water splitting hydrogen production process.Consequently,the rational design and development of low overpotential and high stability electrocatalytic water splitting catalysts are critical toward the realization of low-cost hydrogen production technology.In this review,we summarize the existing hydrogen production methods,elaborate the reaction mechanism of the electrocatalytic water splitting reaction under acidic and alkaline conditions and the recent progress of the respective catalysts for the two half-reactions.The structure-activity relationship of the catalyst was deep-going discussed,together with the prospects of electrocatalytic water splitting and the current challenges,aiming at provide insights for electrocatalytic water splitting catalyst development and its industrial applications.展开更多
We present a straightforward physical approach for synthesizing multiwalled carbon nanotubes(CNTs)-Pd Au/Pt trimetallic nanoparticles(NPs), which allows predesign and control of the metal compositional ratio by simply...We present a straightforward physical approach for synthesizing multiwalled carbon nanotubes(CNTs)-Pd Au/Pt trimetallic nanoparticles(NPs), which allows predesign and control of the metal compositional ratio by simply adjusting the sputtering targets and conditions. The small-sized CNTs-Pd Au/Pt NPs(~3 nm, Pd/Au/Pt ratio of 3:1:2) act as nanocatalysts for the methanol oxidationreaction(MOR), showing excellent performance with electrocatalytic peak current of 4.4 A mg^(-1) Pt and high stability over 7000 s. The electrocatalytic activity and stability of the Pd Au/Pt trimetallic NPs are much superior to those of the corresponding Pd/Pt and Au/Pt bimetallic NPs,as well as a commercial Pt/C catalyst. Systematic investigation of the microscopic, crystalline, and electronic structure of the Pd Au/Pt NPs reveals alloying and charge redistribution in the Pd Au/Pt NPs, which are responsible for the promotion of the electrocatalytic performance.展开更多
Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via el...Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development.展开更多
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金supported by the National Natural Science Foundation of China[Nos.U21A20332,52103226,52202275,52203314,and 12204253]the Distinguished Young Scholars Fund of Jiangsu Province[No.BK20220061]the Fellowship of China Postdoctoral Science Foundation[No.2021M702382]。
文摘Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金supported by the Natural Science Foundation of China(52273288 and U2102211)the Natural Science Foundation of Heilongjiang Province of China(LH2021B014)the Fundamental Research Foundation for Universities of Heilongjiang Province(2021-KYYWF-0004).
文摘In recent years,porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores,high specific surface area,chemical and thermal stability,and diverse functional building blocks.Phenazine-linked organic catalysts,exhibited excellent conjugation,electrical conductivity,chemical,and thermal stability,could bring in N atoms with specific numbers and positions to regulate electron levels,anchor metals,and absorb near-infrared light,which expands solar energy utilization.These advantages of the phenazine-linked catalysts attracted our group and numerous researchers to conduct experimental and computational work on photo/electrocatalytic applications and mechanisms.This review summarizes the recent significant research progress,synthesis methods,photo/electrocatalytic performance,and applications of relative phenazine-linked catalysts.Furthermore,the photo/electrocatalytic mechanism was systematized and summarized by combining experiments and density functional theory calculations simultaneously.
基金financially supported by the National Natural Science Foundation of China (22372001)Starting Fund for Scientific Research of High-Level Talents, Anhui Agricultural University (rc382108)+1 种基金Anhui Provincial Key Research and Development Plan (2022e07020037)Innovation and Entrepreneurship Training Program for College Students (X202310364204, S202210364046, X202310364209)
文摘Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds.
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
基金supported by the National Natural Science Foundation of China (21471122)Graduate Student Education Innovation Fundation and President Foundation of Wuhan Institute of Technology (CX2015147, 2016062)~~
文摘We successfully designed and prepared a g-C3N4-ZnS-DNA nanocomposite by a simple method and systematically investigated its morphology,microstructure,and electrocatalytic properties.The as-prepared g-C3N4-ZnS-DNA nanocomposite possessed the electrocatalytic activity of g-C3N4-ZnS and the conductivity of DNA.The presence of DNA was found to enhance the electrocatalytic response of the nanocomposite towards environmental hormones,e.g.pentachlorophenol and nonylphenol,owing to the interaction between g-C3N4-ZnS and DNA,indicating that a stable nanocomposite was formed.The three components showed synergistic effects during electrocatalysis.Electrochemical impedance spectra indicated that the g-C3N4-ZnS-DNA nanocomposite dramatically facilitated the electron transfer of a modified electrode.The co-doping of g-C3N4 film with ZnS and DNA doubled the electrochemical response of the modified electrode in comparison with that of unmodified g-C3N4 film.The detection limits(3 S/N) of pentachlorophenol and nonylphenol were3.3×10^-9 mol L^-1.Meanwhile,we propose a possible Z-scheme mechanism for electron transfer in the g-C3N4-ZnS-DNA nanocomposite and the possible pentachlorophenol and nonylphenol electrocatalytic oxidation mechanism.The g-C3N4-ZnS-DNA nanocomposite-modified electrode was demonstrated to be effective for electrochemical sensing of trace environmental hormones in water samples.
基金supported by the National Natural Science Foundation of China(21007033)the Fundamental Research Funds of Shandong University(2015JC017)~~
文摘An electrochemically reduced graphene oxide sample, ERGO_0.8v, was prepared by electrochemical reduction of graphene oxide (GO) at -0.8 V, which shows unique electrocatalytic activity toward tetracycline (TTC) detection compared to the ERGO-12v (GO applied to a negative potential of-1.2 V), GO, chemically reduced GO (CRGO)-modified glassy carbon electrode (GC) and bare GC electrodes. The redox peaks of TTC on an ERGO-0.8v-modifled glass carbon electrode (GC/ERGO-0.8v) were within 0-0.5 V in a pH 3.0 buffer solution with the oxidation peak current correlating well with TTC concentration over a wide range from 0.1 to 160 mg/L Physical characterizations with Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopies (XPS) demonstrated that the oxygen-containing functional groups on GO diminished after the electrochemical reduction at -0.8 V, yet still existed in large amounts, and the defect density changed as new sp2 domains were formed. These changes demonstrated that this adjustment in the number of oxygen-containing groups might be the main factor affecting the electrocatalytic behavior of ERGO. Additionally, the defect density and sp2 domains also exert a profound influence on this behavior. A possible mechanism for the TTC redox reaction at the GC/ERGO-0.8v electrode is also presented. This work suggests that the electrochemical reduction is an effective method to establish new catalytic activities of GO by setting appropriate parameters.
基金the National Natural Science Foundation of China(No.20976197) for its financial support of this project
文摘With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property for electrocatalytic reduction of CO2 in ionic liquid was studied by cyclic voltammogram(CV).The effects of various reaction variables like temperature,working potential and cathode materials on the electrocatalytic performance were also investigated.80%yield of DMC was obtained under the optimal reaction conditions.
基金the Fund of the Natural Science of Guangxi (0731015)
文摘Praseodymium was selected as a promoter for SnO2/Ti electrode to improve the electrocatalytic performance by electrodeposition in pharmaceutical wastewater treatment; the micrograph and the structure were characterized by SEM and XRD. Mixture uniform design was used in the optimization of the electrolytic conditions; mathematical model was established according to the rate of wiping COD off, which revealed the relationship between the current intensity, time of electrolysis, the amount of doped Pr, and the ratio of area (SnOJTi:Al). On the basis of the analysis of the empirical model, the optimized parameters had been obtained; the rate of wiping COD off was up to 94.9%, it decreased from 392 to 20 mg/L. Experimental results showed that the electrocatalytic performance of the electrode doped with Pr was superior for the treatment of pharmaceutical wastewater.
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
基金supported by National Natural Science Foundation of China (Grant No. 21273192, 91023010, 61204009, 21303153)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant No. 104100510001)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (2008 HASTIT016)Henan Province Science and Technology Key Project (Grant No. 082102230036 and 122102210479)
文摘In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and current density time curve. It is found that the resultant Pt-Co_3O_4 catalysts with minute amount of Pt exhibite attractive electrocatalytic activity for methanol oxidation reaction(MOR) but with a high resistance CO poisoning due to the synergistic effects from Pt and Co_3O_4. Together with the low manufacturing cost of Co_3O_4, the reported nanostructured Pt-Co_3O_4 catalyst is expected to be a promising electrode material for direct methanol fuel cells(DMFC).
基金the 11th Five-Year Supporting Programs of Science and Technology (No. 2006BAD04A12)
文摘The platinum nanoparticles supported on self-organized TiO2 nanotubes (Pt-TiO2/Ti) were prepared using electrochemical anodic oxidation followed by cathodic reduction. The structure and chemical nature of the Pt-TiO2/Ti electrocatalyst were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Both XRD and SEM results indicate the presence of platinum on nanotubular TiO2. The stability of the Pt deposits was also investigated in 0.5 mol/L H2SO4 solution by cyclic voltammetry. The electrocatalytic activity of the Pt-TiO2/Ti catalyst exhibits enhancement effect during electro-oxidation of methanol when annealed to anatase. Successive cyclic voltam- mograms of methanol oxidation on the Pt-TiO2/Ti electrocatalyst shows unique electrocatalytic characteristics when compared to methanol oxidation on the bulk Pt catalyst. This is because of further quick oxidation of adsorbed CO by Pt (111) facets of Pt particles on self-organized TiO2 nanotubes when the formation of an electroactive film onto the working catalyst surface occurs.
基金Supported by the National Natural Science Foundation of China(No.20973065)the Fund of Basic Research in Natural Science Issued by Shanghai Municipal Committee of Science+4 种基金 China(No.08dj1400100)the Shanghai Leading Project China (No.B409)the Foundation of Outstanding Young Talent in University of Anhui Province China No.2010SQRL042)
文摘The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the passed charge, the nature of electrodes and the current density(j) on the yield of PC were investigated to optimize the electrolytic conditions, with the maximal yield to be 46.2%, the selectivity of propylene carbonate is 100%. The reduction of propylene oxide in the absence and presence of CO2 was examined by cyclic voltammetry. The mechanism of the reaction initiated by the synergistic effect of halides ions of supporting electrolytes with nucleophilicity and the metal ions from scarification anode with Lewis acid acidity was proposed on the basis of our results.
文摘Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.
基金Sponsored by Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2013ZX07201007)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0795)
文摘The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.
基金financially supported by the Nature Science Foundation of China (Grant No.U1610106)the Nature Science Foundation of China (Grant No.21703208)
文摘A novel high gravity multi-concentric cylinder electrodes-rotating bed(MCCE-RB) was developed for the electrocatalytic degradation of phenol wastewater in order to enhance the mass transfer with the self-made RuO_2-IrO_2-SnO_2/Ti anodes. The influences of electric current density, inlet liquid circulation flowrate, high gravity factor, sodium chloride concentration,and initial pH value on phenol degradation efficiency were investigated, with the optimal operating conditions determined. The results showed that under the optimal operating conditions covering a current density of 35 mA/cm^2, an inlet liquid circulation flowrate of 48 L/h, a high gravity factor of 20, a sodium chloride concentration of 8.5 g/L, an initial pH value of 6.5, a reaction time of 100 min, and an initial phenol concentration of 500 mg/L, the efficiency for removal of phenol reached 99.7%, which was improved by 10.4% as compared to that achieved in the normal gravity field. The tendency regarding the change in efficiency for removal of phenol, total organic carbon(TOC), and chemical oxygen demand(COD)over time was studied. The intermediates and degradation pathway of phenol were deduced by high performance liquid chromatography(HPLC).
基金financial support from the National Nature Science Foundation of China(22122113)National Key Research&Development Program of China(2021YFB4000405)。
文摘As a secondary energy with great commercialization potential,hydrogen energy has been widely studied due to the high calorific value,clean combustion products and various reduction methods.At present,the blueprint of hydrogen energy economy in the world is gradually taking shape.Compared with the traditional high-energy consuming methane steam reforming hydrogen production method,the electrocatalytic water splitting hydrogen production stands out among other process of hydrogen production owning to the mild reaction conditions,high-purity hydrogen generation and sustainable production process.Basing on current technical economy situation,the highly electric power cost limits the further promotion of electrocatalytic water splitting hydrogen production process.Consequently,the rational design and development of low overpotential and high stability electrocatalytic water splitting catalysts are critical toward the realization of low-cost hydrogen production technology.In this review,we summarize the existing hydrogen production methods,elaborate the reaction mechanism of the electrocatalytic water splitting reaction under acidic and alkaline conditions and the recent progress of the respective catalysts for the two half-reactions.The structure-activity relationship of the catalyst was deep-going discussed,together with the prospects of electrocatalytic water splitting and the current challenges,aiming at provide insights for electrocatalytic water splitting catalyst development and its industrial applications.
基金supported by the National Natural Science Foundation of China (Nos. 61675143, 11661131002)the Natural Science Foundation of Jiangsu Province (No. BK20160277)+2 种基金the Soochow University-Western University Joint Centre for Synchrotron Radiation Researchthe Collaborative Innovation Center of Suzhou Nano Science & Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘We present a straightforward physical approach for synthesizing multiwalled carbon nanotubes(CNTs)-Pd Au/Pt trimetallic nanoparticles(NPs), which allows predesign and control of the metal compositional ratio by simply adjusting the sputtering targets and conditions. The small-sized CNTs-Pd Au/Pt NPs(~3 nm, Pd/Au/Pt ratio of 3:1:2) act as nanocatalysts for the methanol oxidationreaction(MOR), showing excellent performance with electrocatalytic peak current of 4.4 A mg^(-1) Pt and high stability over 7000 s. The electrocatalytic activity and stability of the Pd Au/Pt trimetallic NPs are much superior to those of the corresponding Pd/Pt and Au/Pt bimetallic NPs,as well as a commercial Pt/C catalyst. Systematic investigation of the microscopic, crystalline, and electronic structure of the Pd Au/Pt NPs reveals alloying and charge redistribution in the Pd Au/Pt NPs, which are responsible for the promotion of the electrocatalytic performance.
文摘Among the sustainable energy sources,hydrogen is the one most promising for alleviating the pollution issues related to the usage of conventional fuels,as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting.The hydrogen evolution reaction(HER,a half-reaction of water splitting)plays a pivotal role in decreasing the price and increasing the catalytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes.Herein,we summarize the recent advances in the development of metal phosphides as HER electrocatalysts,focus on their synthesis(post-treatment,in situ generation,and electrodeposition methods)and the enhancement of their electrocatalytic activity(via elemental doping,interface and vacancy engineering,construction of specific supports and nanostructures,and the design of bior polymetallic phosphides),and highlight the crucial issues and challenges of future development.