The electrochemical oxidation of 1, 3-benzenedithiol was investigated in a 0. 100 mol/L tetrabutylammonium perchlorate/acetonitrile electrolyte. The electrochemical techniques used were potential sweep, bulk electroly...The electrochemical oxidation of 1, 3-benzenedithiol was investigated in a 0. 100 mol/L tetrabutylammonium perchlorate/acetonitrile electrolyte. The electrochemical techniques used were potential sweep, bulk electrolysis, rotating disc and the potential step method. The combination of the techniques yielded the number of electrons transferred per molecule, the reaction order, the transfer coefficient, the diffusion coefficient and concentration of dithiol anions, the standard heterogeneous rate constant as well as the formal potential and equilibrium constant of the preceeding dissociation reaction. This paper also illustrates the methods for studying the electrode kinetics of reactions which (a) involve a chemical reaction preceeding the electron-transfer process, (b) have insoluble polymer products, and (c) are totally irreversible.展开更多
To improve the electrochemical kinetics of Nd–Mg–Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide(rGO) via a chemical reduction process. Results indicated that rGO sh...To improve the electrochemical kinetics of Nd–Mg–Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide(rGO) via a chemical reduction process. Results indicated that rGO sheets uniformly coated on the alloy surface, yielding a threedimensional network layer. The coated surfaces contained numerous hydrophilic functional groups, leading to better wettability of the alloy in aqueous alkaline media. This, in turn, increased the concentration of electro-active species at the interface between the electrode and the electrolyte, improving the electrochemical kinetics and the rate discharge of the electrodes. The high rate dischargeability at 1500 mA·g^(–1) increased from 53.2% to 83.9% after modification. In addition, the modification layer remained stable and introduced a dense metal oxide layer to the alloy surface after a long cycling process. Therefore, the protective layer prevented the discharge capacity from quickly decreasing and improved cycling stability.展开更多
Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced elect...Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.展开更多
Scanning electrochemical microscopy (SECM) feedback mode has been used to investigate regeneration kinetics on P1 (4-(bis-{4-[5-(2,2-dicyanovinyl) thiophene-2-yl] pH-enyl} amino) benzoic acid) dye sensitized nickel ox...Scanning electrochemical microscopy (SECM) feedback mode has been used to investigate regeneration kinetics on P1 (4-(bis-{4-[5-(2,2-dicyanovinyl) thiophene-2-yl] pH-enyl} amino) benzoic acid) dye sensitized nickel oxide (NiO) electrodes in contact with reduced iodide liquid electrolyte in different electrolyte solvents. We were used acetonitrile, ethanol, methanol and propylene carbonate solvents for comparison under illumination of different wavelengths. We found significant variation of regeneration kinetics parameters such as regeneration rate constant (<em>k<sub>eff</sub></em>), the reduction rate constant (<em>k<sub>red</sub></em>) and absorption cross-section (Φhv) in different illumination intensity and different solvents.展开更多
文摘The electrochemical oxidation of 1, 3-benzenedithiol was investigated in a 0. 100 mol/L tetrabutylammonium perchlorate/acetonitrile electrolyte. The electrochemical techniques used were potential sweep, bulk electrolysis, rotating disc and the potential step method. The combination of the techniques yielded the number of electrons transferred per molecule, the reaction order, the transfer coefficient, the diffusion coefficient and concentration of dithiol anions, the standard heterogeneous rate constant as well as the formal potential and equilibrium constant of the preceeding dissociation reaction. This paper also illustrates the methods for studying the electrode kinetics of reactions which (a) involve a chemical reaction preceeding the electron-transfer process, (b) have insoluble polymer products, and (c) are totally irreversible.
基金financially supported by the National Natural Science Foundation of China(NOs.21303157 and51771164)the Natural Science Foundation of Hebei Province(No.E2019203161)Scientific Research Projects in Colleges and Universities in Hebei Province(No.QN2016002)
文摘To improve the electrochemical kinetics of Nd–Mg–Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide(rGO) via a chemical reduction process. Results indicated that rGO sheets uniformly coated on the alloy surface, yielding a threedimensional network layer. The coated surfaces contained numerous hydrophilic functional groups, leading to better wettability of the alloy in aqueous alkaline media. This, in turn, increased the concentration of electro-active species at the interface between the electrode and the electrolyte, improving the electrochemical kinetics and the rate discharge of the electrodes. The high rate dischargeability at 1500 mA·g^(–1) increased from 53.2% to 83.9% after modification. In addition, the modification layer remained stable and introduced a dense metal oxide layer to the alloy surface after a long cycling process. Therefore, the protective layer prevented the discharge capacity from quickly decreasing and improved cycling stability.
基金Project(NCET-10-0946)supported by Program for New Century Excellent Talents in University of ChinaProject(2017JY0038)supported by Science and Technology Key Project of Sichuan Province,ChinaProject(2013TX8)supported by Titanium and Titanium Alloy Innovation Team of Panzhihua City,China
文摘Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.
文摘Scanning electrochemical microscopy (SECM) feedback mode has been used to investigate regeneration kinetics on P1 (4-(bis-{4-[5-(2,2-dicyanovinyl) thiophene-2-yl] pH-enyl} amino) benzoic acid) dye sensitized nickel oxide (NiO) electrodes in contact with reduced iodide liquid electrolyte in different electrolyte solvents. We were used acetonitrile, ethanol, methanol and propylene carbonate solvents for comparison under illumination of different wavelengths. We found significant variation of regeneration kinetics parameters such as regeneration rate constant (<em>k<sub>eff</sub></em>), the reduction rate constant (<em>k<sub>red</sub></em>) and absorption cross-section (Φhv) in different illumination intensity and different solvents.