Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3 , which can be conducted at either high potential or low potential; however, the need for an external electrici...Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3 , which can be conducted at either high potential or low potential; however, the need for an external electricity power source limits its applications. In this work, a novel self-powered electrochemical anodic oxidization (SPAO) system was introduced for preparing mesoporous Al2O3 , by using newly-invented triboelectric nanogenerator (TENG) arrays driven by wind power. Using the controllable voltage output of the TENG arrays, the SPAO system was shown to regulate the pore depth and pore size of the mesoporous Al2O3 . In contrast to traditional AO systems, this technique takes advantage of the high output voltage of TENG arrays without any additional energy costs. In addition, the SPAO system can be used for the preparation of other mesoporous materials.展开更多
AlNbO_4,as lithium-ion batteries(LIBs) anode,has a high theoretical capacity of 291.5 m Ah g^-1.Here,AlNbO_4 anode materials were synthesized through a simple solid-state method.The structure,morphology and electroc...AlNbO_4,as lithium-ion batteries(LIBs) anode,has a high theoretical capacity of 291.5 m Ah g^-1.Here,AlNbO_4 anode materials were synthesized through a simple solid-state method.The structure,morphology and electrochemical performances of AlNbO4 anode were systematically investigated.The results show that AlNbO4 is monoclinic with C2/m space group.The scanning electron microscopy(SEM) and transmission electron microscopy(TEM) characterizations reveal the AlNbO_4 particles with the size of 100 nm^–2 lm.As a lithium-ion batteries anode,AlNbO4 delivers a high reversible capacity and good rate capability.The discharge capacity is as high as 151.0 m Ah g^-1 after 50 charge and discharge cycles at 0.1 C corresponding to capacity retention of 90.7 %.When the current density increases to 5.0C,AlNbO4 anode displays reversible discharge capacity of 73.6 m Ah g^-1 at the50 th cycle.展开更多
A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanor...A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method.展开更多
基金Acknowledgements We thank the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21173017, 51272011, and 21275102), the Program for New Century Excellent Talents in University (No. NCET-12-0610), the Science and Technology Research Projects from Education Ministry (No. 213002A), National "Twelfth Five-Year" Plan for Science & Technology Support (No. 2013BAK12B06), the "thousands talents" program for pioneer researcher and his innovation team, China, National Natural Science Foundation of China (Nos. 51432005 and Y4YR011001), Beijing Municipal Commission of Science and Technology (Nos. Z131100006013004 and Z131100006013005).
文摘Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3 , which can be conducted at either high potential or low potential; however, the need for an external electricity power source limits its applications. In this work, a novel self-powered electrochemical anodic oxidization (SPAO) system was introduced for preparing mesoporous Al2O3 , by using newly-invented triboelectric nanogenerator (TENG) arrays driven by wind power. Using the controllable voltage output of the TENG arrays, the SPAO system was shown to regulate the pore depth and pore size of the mesoporous Al2O3 . In contrast to traditional AO systems, this technique takes advantage of the high output voltage of TENG arrays without any additional energy costs. In addition, the SPAO system can be used for the preparation of other mesoporous materials.
基金financially supported by the National Natural Science Foundation of China (No.51271036)
文摘AlNbO_4,as lithium-ion batteries(LIBs) anode,has a high theoretical capacity of 291.5 m Ah g^-1.Here,AlNbO_4 anode materials were synthesized through a simple solid-state method.The structure,morphology and electrochemical performances of AlNbO4 anode were systematically investigated.The results show that AlNbO4 is monoclinic with C2/m space group.The scanning electron microscopy(SEM) and transmission electron microscopy(TEM) characterizations reveal the AlNbO_4 particles with the size of 100 nm^–2 lm.As a lithium-ion batteries anode,AlNbO4 delivers a high reversible capacity and good rate capability.The discharge capacity is as high as 151.0 m Ah g^-1 after 50 charge and discharge cycles at 0.1 C corresponding to capacity retention of 90.7 %.When the current density increases to 5.0C,AlNbO4 anode displays reversible discharge capacity of 73.6 m Ah g^-1 at the50 th cycle.
基金CSIR (09/0810 (0021)/ 2012-EMR-I), Periyar University for providing fundUGC networking resource center for providing visiting fellowship
文摘A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method.