期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection 被引量:2
1
作者 Maria Baeva Dmitry Gets +8 位作者 Artem Polushkin Aleksandr Vorobyov Aleksandr Goltaev Vladimir Neplokh Alexey Mozharov Dmitry VKrasnikov Albert GNasibulin Ivan Mukhin Sergey Makarov 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第9期45-58,共14页
Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we deve... Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we develop a perovskite electrochemical cell both for light emission and detection,where the active layer consists of a composite material made of halide perovskite microcrystals,polymer support matrix,and added mobile ions.The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition,emitting light at the wavelength of 523 nm,yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 4.3 lm/W.The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40%lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates.Moreover,the device operates as a photodetector with a sensitivity up to 0.75 A/W,specific detectivity of 8.56×1011 Jones,and linear dynamic range of 48 dB.The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50μm. 展开更多
关键词 composite inorganic halide perovskite silicon single walled carbon nanotubes light-emitting electrochemical cell PHOTODETECTOR indicator display
下载PDF
Multicomponent mixed metallic hierarchical ZnNi@Ni@PEDOT arrayed structures as advanced electrode for high-performance hybrid electrochemical cells
2
作者 Anki Reddy Mule Bhimanaboina Ramulu +1 位作者 Shaik Junied Arbaz Jae Su Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期448-458,共11页
Engineering multicomponent nanomaterials as an electrode with rationalized ordered structures is a promising strategy for fulfilling the high-energy storage needs of supercapacitors(SCs).Even now,the fundamental barri... Engineering multicomponent nanomaterials as an electrode with rationalized ordered structures is a promising strategy for fulfilling the high-energy storage needs of supercapacitors(SCs).Even now,the fundamental barrier to utilizing hydroxides/hydroxyl carbonates is their poor electrochemical performance,resulting from the significantly poor electrical conductivity and sluggish charge storage kinetics.Hence,a multilayered structural approach is primarily and successfully used to construct electrodes as one of the efficient approaches.This method has made it possible to develop well-ordered nanostructured electrodes with good performance by taking advantage of tunable approach parameters.Herein,we report the design of multilayered heterostructure porous zinc-nickel nanosheets@nickel flakes hydroxyl carbonates and/or hydroxides integrated with conductive PEDOT fibrous network(i.e.,ZnNi@Ni@PEDOT) via facile synthesis methods.The combined hybrid electrode acquires the features of high electrical conductivity from one part and various valance states from another one to develop a well-organized nanosheet/flake/fibrous-like heterostructure with decent mechanical strength,creating robust synergistic results.Thus,the designed binder-free ZnNi@Ni@PEDOT electrode delivers a high areal capacity value of 1050.1 μA h cm^(-2) at 3 mA cm^(-2) with good cycling durability,significantly outperforming other individual electrodes.Moreover,its feasibility is also tested by constructing a hybrid electrochemical cell(HEC).The assembled HEC exhibits a high areal capacity value of 783.8 μA h cm^(-2) at5 mA cm^(-2).and even at a high current density of 100 mA cm^(-2)(484.6 μA h cm^(-2)),the device still retains a rate capability of 61,82%,Also,the HEC shows maximum energy and power densities of0.595 mW h cm^(-2) and 77.23 mW cm^(-2),respectively,along with good cycling stability.The obtained energy storage capabilities effectively power various electronic components.These results provide a viable and practical way to construct a positive electrode with innovative heterostructures for highperformance energy storage devices and profoundly influence the development of electrochemical SCs. 展开更多
关键词 Mixed metal Hydroxyl carbonates/hydroxides Layer-by-layer design Fibrous PEDOT network electrochemical performance Hybrid electrochemical cell
下载PDF
APPLICATIONS AND MANUFACTURE OF THE MICROSCALE LONG-OPTICAL-PATH ELECTROCHEMICAL CELL WITH A PLUG-IN THIN-LAYER ELECTRODE 被引量:2
3
作者 Zhang Yu YU Mao Chun JING Shen Hua MIAO Department of Chemistry,Qufu Normal University,Qufu Shandong,273165 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第8期725-728,共4页
The construction and characteristics of a microscale long-optical-path electrochemi- cal cell with a plug-in thin-layer electrode are described.Using ferricyanide as the test species,the thermodynamic parameters of el... The construction and characteristics of a microscale long-optical-path electrochemi- cal cell with a plug-in thin-layer electrode are described.Using ferricyanide as the test species,the thermodynamic parameters of electron transfer processes are determined at car- bon,plantinum,and gold electrodes. 展开更多
关键词 APPLICATIONS AND MANUFACTURE OF THE MICROSCALE LONG-OPTICAL-PATH electrochemical cell WITH A PLUG-IN THIN-LAYER ELECTRODE SCE PLUG
下载PDF
High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells 被引量:1
4
作者 Zuoqing Liu Zhengjie Tang +8 位作者 Yufei Song Guangming Yang Wanru Qian Meiting Yang Yinlong Zhu Ran Ran Wei Wang Wei Zhou Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期505-520,共16页
Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem... Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage.However,the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs.Here,a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site,Pr_(1/6)La_(1/6)Nd_(1/6)Ba_(1/6)Sr_(1/6)Ca_(1/6)CoO_(3−δ)(PLN-BSCC),is reported as a high-performance bifunctional air electrode for R-PCEC.By harnessing the unique functionalities of multiple ele-ments,high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes.Especially,an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances,demonstrating a peak power density of 1.21 W cm^(−2)for the fuel cell,while simultaneously obtaining an astonishing current density of−1.95 A cm^(−2)at an electrolysis voltage of 1.3 V and a temperature of 600℃.The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity,fast hydration reactivity and high configurational entropy.This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs. 展开更多
关键词 Reversible proton ceramic electrochemical cells High-entropy oxide Air electrode Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Design and optimization of electrochemical cell potential for hydrogen gas production
5
作者 Nawar KAl-Shara Farooq Sher +2 位作者 Sania ZIqbal Oliver Curnick George ZChen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期421-427,I0013,共8页
This study deals with the optimization of best working conditions in molten melt for the production of hydrogen(H2) gas.Limited research has been carried out on how electrochemical process occurs through steam splitti... This study deals with the optimization of best working conditions in molten melt for the production of hydrogen(H2) gas.Limited research has been carried out on how electrochemical process occurs through steam splitting via molten hydroxide.54 combinations of cathode,anode,temperature and voltage have been investigated for the optimization of best working conditions with molten hydroxide for hydrogen gas production.All these electrochemical investigations were carried out at 225 to 300℃ temperature and 1.5 to 2.5 V applied voltage values.The current efficiency of 90.5,80.0 and 68.6% has been achieved using stainless steel anodic cell with nickel,stainless steel and platinum working cathode respectively.For nickel cathode,an increase in the current directly affected the hydrogen gas flow rate at cathode.It can be hypothesized from the noted results that increase in current is directly proportional to operating temperature and applied voltage.Higher values were noted when the applied voltages increased from 1.5 to 2.5 V at 300℃,the flow rate of hydrogen gas increased from 1.5 to 11.3 cm^(3) min^(-1),1.0 to 13 cm^(3) min^(-1) in case of electrolysis@stainless steel and@graphite anode respectively.It is observed that the current efficiency of stainless steel anodic cell was higher than the graphite anodic cell.Therefore,steam splitting with the help of molten salts has shown an encouraging alternate to current methodology for H2 fuel production. 展开更多
关键词 Sustainable energy Splitting steam ELECTROLYSIS Hydrogen gas production electrochemical cell and Variable cathodes
下载PDF
Electrode Modifications for Polymer Light-Emitting Electrochemical Cells
6
作者 Z Y Zhong Y D Jiang W Z Li X Yang 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期600-602,共3页
The influence of different modification methods on the surface properties of indium-tin-oxide (ITO) electrodes were investigated by measurements of chemical composition,surface roughness,sheet resistance,contact angle... The influence of different modification methods on the surface properties of indium-tin-oxide (ITO) electrodes were investigated by measurements of chemical composition,surface roughness,sheet resistance,contact angle and surface free energy.Experimental results demonstrate that oxygen plasma treatment more effectively optimizes the surface properties of ITO electrodes compared with the other treatments.Furthermore,the polymer light-emitting electrochemical cells (PLECs) with the differently treated ITO substrates as device electrodes were fabricated and characterized.It is found that oxygen plasma treatment on the ITO electrode enhances injection current,luminance and efficiency,thereby improves the device characteristics of the PLECs. 展开更多
关键词 electroluminescene polymer light-emitting electrochemical cells electrode modifications device performance
下载PDF
CHRONOABSORPTOMETRY FOR THE DETERMINATION OF KINETIC PARAMETERS OF ELECTRON TRANSFER REACTIONS USING LONG-OPTICAL-PATH ELECTROCHEMICAL CELL
7
作者 Zhang Yu YU Mei QIN Mao Chun JING Department of Chemistry,Qufu Normal University,Qufu Shandong,273165 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第8期729-732,共4页
A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electror... A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electroreduction of ferricyanide.A long-optical-path electro- chemical cell with a plug-in electrode is used.The thickness of solution layer is 0.55 mm 展开更多
关键词 CHRONOABSORPTOMETRY FOR THE DETERMINATION OF KINETIC PARAMETERS OF ELECTRON TRANSFER REACTIONS USING LONG-OPTICAL-PATH electrochemical cell SCE
下载PDF
Sn-doped cobalt containing perovskite as the air electrode for highly active and durable reversible protonic ceramic electrochemical cells
8
作者 Min Fu Wenjing Hu +4 位作者 Hua Tong Xin Ling Linggui Tan Fanglin Chen Zetian Tao 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第1期63-72,共10页
One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a ... One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a flexible route to the generation of renewable fuels.However,the R-PCEC development faces a range of significant challenges,including slow oxygen reaction kinetics,inadequate durability,and poor round-trip efficiency resulting from the inadequacy of an air electrode.To address these issues,we report novel B-sites doped Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.3)O_(3−δ)(PBCF)with varying amounts of Sn as the air electrode for R-PCEC to further enhance electrochemical performance at lower temperatures.At 600℃,R-PCEC with an air electrode consisting of Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.25)Sn_(0.05)O_(3+δ)has achieved peak power density of 1.12 W∙cm^(−2) in the fuel cell mode and current density of 1.79 A∙cm^(−2) in the electrolysis mode at a voltage of 1.3 V.Moreover,R-PCECs have shown good stability in the electrolysis mode of 100 h.This study presents a practical method for developing durable high-performance air electrodes for R-PCECs. 展开更多
关键词 triple conducting oxide dual-element doping protonic ceramic electrochemical cells(PCECs) catalytic
原文传递
PREPARATION AND CHARACTERIZATION OF PVA BASED SOLID POLYMER ELECTROLYTES FOR ELECTROCHEMICAL CELL APPLICATIONS 被引量:2
9
作者 Anji Reddy Polu Ranveer Kumar 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第4期641-648,共8页
Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD, FTIR, DSC and AC impedance spec... Solid polymer electrolyte films containing poly(vinyl alcohol) (PVA) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique and characterized by using XRD, FTIR, DSC and AC impedance spectroscopic analysis. The amorphous nature of the polymer electrolyte films has been confirmed by XRD. The complex formation between PVA and Mg salt has been confirmed by FTIR. The glass transition temperature decreases with increasing the Mg salt concentration. The AC impedance studies are performed to evaluate the ionic conductivity of the polymer electrolyte films in the range of 303-383 K, and the temperature dependence seems to obey the Arrhenius behavior. Transport number measurements show that the charge transport is mainly due to ions. Electrochemical cell of configuration Mg/(PVA + Mg(NO3)2) (70:30)/(12 + C + electrolyte) has been fabricated. The discharge characteristics of the cell were studied for a constant load of 100 kΩ. 展开更多
关键词 Polymer electrolyte XRD DSC Ionic conductivity electrochemical cell.
原文传递
Carbon nanodots:A metal-free,easy-to-synthesize,and benign emitter for light-emitting electrochemical cells 被引量:1
10
作者 Yongfeng Liu Shi Tang +5 位作者 Xiuyu Wu Nicolas Boulanger Eduardo Gracia-Espino Thomas Wågberg Ludvig Edman Jia Wang 《Nano Research》 SCIE EI CSCD 2022年第6期5610-5618,共9页
Light-emitting electrochemical cells(LECs)can be fabricated with cost-efficient printing and coating methods,but a current drawback is that the LEC emitter is commonly either a rare-metal complex or an expensive-to-sy... Light-emitting electrochemical cells(LECs)can be fabricated with cost-efficient printing and coating methods,but a current drawback is that the LEC emitter is commonly either a rare-metal complex or an expensive-to-synthesize conjugated polymer.Here,we address this issue through the pioneering employment of metal-free and facile-to-synthesize carbon nanodots(CNDs)as the emitter in functional LEC devices.Circular-shaped(average diameter=4.4 nm)and hydrophilic CNDs,which exhibit narrow cyan photoluminescence(peak=485 nm,full width at half maximum=30 nm)with a high quantum yield of 77%in dilute ethanol solution,were synthesized with a catalyst-free,one-step solvothermal process using low-cost and benign phloroglucinol as the sole starting material.The propensity of the planar CNDs to form emission-quenching aggregates in the solid state was inhibited by the inclusion of a compatible 2,7-bis(diphenylphosphoryl)-9,9’-spirobifluorene host compound,and we demonstrate that such pristine host-guest CND-LECs turn on to a peak luminance of 118 cd·m^(−2)within 5 s during constant current-density driving at 77 mA·cm^(−2). 展开更多
关键词 carbon nanodot light-emitting electrochemical cell PHLOROGLUCINOL sustainable synthesis solution-based fabrication
原文传递
A carbon dot-based total green and self-recoverable solid-state electrochemical cell fully utilizing H_(2)O_(2)redox couple 被引量:2
11
作者 Zhaomin Chen Xiaoqing Gu +4 位作者 Yutong Guo Xin Wang Mingwang Shao Bin Dong Zhenhui Kang 《SusMat》 2021年第3期448-457,共10页
Electrochemical cell can overcome the inherent intermittence of the renewable energy sources,thus showing great potentials in applications ranging from elec-trical energy storage to future smart grid.However,the curre... Electrochemical cell can overcome the inherent intermittence of the renewable energy sources,thus showing great potentials in applications ranging from elec-trical energy storage to future smart grid.However,the current electrochemical cells could not achieve the“total green”feature by fully utilizing the clean and abundant O_(2)/H_(2)O redox couples due to the enormous overpotentials for both oxygen reduction reaction(ORR)and oxygen release reaction(OER).Herein,we report a“total green”electrochemical composite film cell based on carbon dots(CDots),which can realize both ORR and OER in the acid environment.The in-air voltage generation(0.95 V,with a maximum power of 5.3μW)relies on the multiple-electron-transfer redox chemical reaction between the two active components inside the composite film,that is,ORR/OER of CDots and the redox reaction of polyaniline(PANI)on the electrode and the resulting proton concentration gradient.Interestingly,the cell can be self-recovered at low load,recharged by adding H_(2)O_(2),or electrocharged at high load.We anticipate that current study may open up new opportunities for designing and developing total-green energy storage and conversion systems for diverse applications. 展开更多
关键词 carbon dots electron/proton transfer O_(2)/H_(2)O redox couples total green electrochemical cell
原文传递
PURIFIED POLAR POLYFLUORENE FOR LIGHT-EMITTING DIODES AND LIGHT-EMITTING ELECTROCHEMICAL CELLS
12
作者 孙明亮 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2012年第4期503-510,共8页
Conjugated ployfluorene with 2-(2-(2-methoxyethoxy)ethoxy)ethyl groups (EO-PF) is prepared by the palladium- catalyzed Suzuki coupling reaction. The polymer is purified carefully by a simple chemical procedure. ... Conjugated ployfluorene with 2-(2-(2-methoxyethoxy)ethoxy)ethyl groups (EO-PF) is prepared by the palladium- catalyzed Suzuki coupling reaction. The polymer is purified carefully by a simple chemical procedure. The inductively coupled plasma (ICP) test shows palladium-catalyst in the polymer can be removed by this procedure. The thermal properties, electrochemical properties, UV-Vis absorption properties, photoluminescence properties and electroluminescent properties of the polymer without (EO-PF1) or with purification (EO-PF2) are studied. EO-PF2 shows better PL CIE coordinates in THF solutions as blue light-emitting materials and better photoluminescence stability in thin solid films. Polymer light emitting diodes and electrochemical cells based on EO-PF2 exhibit somewhat improved optoelectronic performance than control devices of EO-PF 1. 展开更多
关键词 PURIFICATION POLYFLUORENE Palladium catalyst Light-emitting electrochemical cells.
原文传递
Highly spatial imaging of electrochemical activity on the wrinkles of graphene using all-solid scanning electrochemical cell microscopy
13
作者 Rong Jin Hong-yan Lu +3 位作者 Lei Cheng Jian Zhuang Dechen Jiang Hong-Yuan Chena 《Fundamental Research》 CAS 2022年第2期193-197,共5页
Here,all-solid scanning electrochemical cell microscopy(SECCM)is first established by filling polyacrylamide(PAM)into nanocapillaries as a solid electrolyte.A solid PAM nanoball at the tip of a nanocapillary contacts ... Here,all-solid scanning electrochemical cell microscopy(SECCM)is first established by filling polyacrylamide(PAM)into nanocapillaries as a solid electrolyte.A solid PAM nanoball at the tip of a nanocapillary contacts graphene and behaves as an electrochemical cell for simultaneously measuring the morphology and electrochemical activity.Compared with liquid droplet-based SECCM,this solid nanoball is stable and does not leave any electrolyte at the contact regions,which permits accurate and continuous scanning of the surface without any intervals.Accordingly,the resolutions in the lateral(x-y)and vertical(z)directions are improved to〜10 nm.The complete scanning of the wrinkles on graphene records low currents at the two sidewalls of the wrinkles and a relatively high current at the center of the wrinkles.The heterogeneity in the electrochemical activity of the wrinkle illustrates different electron transfer features on surfaces with varied curvatures,which is hardly observed by the current electrochemical or optical methods.The successful establishment of this high spatial electrochemical microscopy overcomes the current challenges in investigating the electrochemical activity of materials at the nanoscale,which is significant for a better understanding of electron transfer in materials. 展开更多
关键词 Scanning electrochemical cell microscopy Solid electrolyte High spatial resolution electrochemical activity WRINKLE
原文传递
Visualization-based prediction of dendritic copper growth in electrochemical cells using convolutional long short-term memory
14
作者 Roshan Kumar Trina Dhara +1 位作者 Han Hu Monojit Chakraborty 《Energy and AI》 2022年第4期149-160,共12页
Electrodeposition in electrochemical cells is one of the leading causes of its performance deterioration. The prediction of electrodeposition growth demands a good understanding of the complex physics involved, which ... Electrodeposition in electrochemical cells is one of the leading causes of its performance deterioration. The prediction of electrodeposition growth demands a good understanding of the complex physics involved, which can lead to the fabrication of a probabilistic mathematical model. As an alternative, a convolutional Long shortterm memory architecture-based image analysis approach is presented herein. This technique can predict the electrodeposition growth of the electrolytes, without prior detailed knowledge of the system. The captured images of the electrodeposition from the experiments are used to train and test the model. A comparison between the expected output image and predicted image on a pixel level, percentage mean squared error, absolute percentage error, and pattern density of the electrodeposit are investigated to assess the model accuracy. The randomness of the electrodeposition growth is outlined by investigating the fractal dimension and the interfacial length of the electrodeposits. The trained model predictions show a significant promise between all the experimentally obtained relevant parameters with the predicted one. It is expected that this deep learning-based approach for predicting random electrodeposition growth will be of immense help for designing and optimizing the relevant experimental scheme in near future without performing multiple experiments. 展开更多
关键词 ELECTRODEPOSITION electrochemical cell Deep learning Data-driven modelling Convolutional long short-term memory
原文传递
The Electrochemical Impedance Behavior of the Living Cells Escherichia Coli
15
作者 Wei LI Jun FENG Hua Quan YANG and Yun Xiang CI(Department of Chemistry, Peking University, Beijing 100871) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第12期0-0,共2页
The semiconductive characteristics of clectron-transfrring proteins in living cells E coli was investigated by electrochemsical impedance spectroscopy(EIS). We found that the electrochemical impedance of living cells ... The semiconductive characteristics of clectron-transfrring proteins in living cells E coli was investigated by electrochemsical impedance spectroscopy(EIS). We found that the electrochemical impedance of living cells as a function of temprature followed the Arrhenius equation for semiconductors. This result shows a strong evidence to prove the semiconductive behavior of proteins 展开更多
关键词 The electrochemical Impedance Behavior of the Living cells Escherichia Coli
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
16
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 Lithium-Ion Batteries Battery Construction Battery Characteristics Energy Storage electrochemical cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Analysis of silicon-based integrated photovoltaic–electrochemical hydrogen generation system under varying temperature and illumination
17
作者 Vishwa Bhatt Brijesh Tripathi +1 位作者 Pankaj Yadav Manoj Kumar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期72-80,共9页
Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials. Due to intimately coupled charge se... Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials. Due to intimately coupled charge separation and photo-catalytic processes, it is very difficult to optimize individual components of such system leading to a very low demonstrated solar-to-fuel efficiency (SFE) of less than 1%. Recently there has been growing interest in an integrated photovoltaic–electrochemical (PV–EC) system based on GaAs solar cells with the demonstrated SFE of 24.5% under concentrated illumination condition. But a high cost of GaAs based solar cells and recent price drop of poly-crystalline silicon (pc-Si) solar cells motivated researchers to explore silicon based integrated PV–EC system. In this paper a theoretical framework is introduced to model silicon-based integrated PV–EC device. The theoretical framework is used to analyze the coupling and kinetic losses of a silicon solar cell based integrated PV–EC water splitting system under varying temperature and illumination. The kinetic loss occurs in the range of 19.1%–27.9% and coupling loss takes place in the range of 5.45%–6.74% with respect to varying illumination in the range of 20–100?mW/cm2. Similarly, the effect of varying temperature has severe impact on the performance of the system, wherein the coupling loss occurs in the range of 0.84%–21.51% for the temperature variation from 25 to 50?°C. ? 2016 Science Press 展开更多
关键词 electrochemical cells electrochemical impedance spectroscopy Gallium arsenide Hydrogen production Nanostructured materials POLYSILICON Semiconducting gallium Silicon Silicon solar cells Solar power generation
下载PDF
Electrochemical determination of Gibbs free energy of formation of magnesium ferrite
18
作者 Ling Wang Huizhu Zhou +1 位作者 Yanruo Hong Girish M Kale 《Journal of University of Science and Technology Beijing》 CSCD 2007年第4期361-364,共4页
The standard Gibbs free energy of formation of magnesium ferrite was determined by means of two types of solid state electrochemical cells: one using MgZr4(PO4)6 (MZP) as the solid electrolyte and the other using... The standard Gibbs free energy of formation of magnesium ferrite was determined by means of two types of solid state electrochemical cells: one using MgZr4(PO4)6 (MZP) as the solid electrolyte and the other using CaF2 as the solid electrolyte. The first cell was operated in the range of 950 to 1100 K. The second cell was operated in the range of 1125 to 1200 K. The reversibility of the cell EMFs was confirmed by microcoulometric titration. The Gibbs energy changes of magnesium ferrite relative to component oxides were calculated based on EMF measurements and are given by following expressions, respectively: AG1 = -3579-15 T (J/mol) and AGⅡ =6258-24.3 T (J/mol). The results obtained from two different cells are consistent with each other. The results also are in agreement with Rao' s and Tretjakov's data in the measured temperature range. When the Gibbs free energies of formation of MgO and Fe203 were substituted in the reaction, the Gibbs free energies of formation of MgFe204 was obtained in two temperature ranges and the for mations are shown as follows: AG 1Formation =-1427394+360.5 T (J/mol) and AGⅡ Formition =-1417557+351.2 T (J/mol). 展开更多
关键词 magnesium ferrite electrochemical cell Gibbs free energy of formation solid electrolyte
下载PDF
Ordered Nafion ionomers decorated polypyrrole nanowires for advanced electrochemical applications
19
作者 Ruili Sun Zhangxun Xia +2 位作者 Huanqiao Li Fenning Jing Suli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期854-858,共5页
Fabrication of novel electrode materials with ordered proton-migration channels is an effective strategy to enhance the proton conductivity of the electrode for polymer electrolyte membrane fuel cells. Here we report ... Fabrication of novel electrode materials with ordered proton-migration channels is an effective strategy to enhance the proton conductivity of the electrode for polymer electrolyte membrane fuel cells. Here we report the electrochemical fabrication of ordered Nafion?ionomers decorated polypyrrole nanowires to construct the ordered proton-migration channels. Based on the electrostatic interaction between Nafion?ionomers and the polymer intermediate, ordered Nafion?ionomers decorated polypyrrole nanowires could be fabricated via chronoamperometry with varying contents of Nafionionomers. The morphologies, charge-storage performances, electron conductivity and proton conductivity of the composites are investigated by scanning electron microscopy, cyclic-voltammetry, galvanostatic charge–discharge measurement and electrochemical impedance spectroscopy. With the modification effect of Nafionionomers on polypyrrole nanowires, the composite shows greater ordered structure relative to another without Nafion?ionomers and the electrochemical performances change with the content of Nafion?ionomers.The composite could achieve a high specific capacitance of 356 F/g at 1 A/g with a 0.62-fold enhancement compared to polypyrrole nanowires without Nafion?ionomers. It also displays a superior electrical conductivity of 49 S/cm and a quite high proton conductivity of 0.014 S/cm at working conditions of fuel cells, which are associated with the requirements of fuel cells and have the potential to be the electrode material for a large range of electrochemical energy conversion devices. 展开更多
关键词 electrochemical polymerization Polypyrrole nanowires Proton conductivity Fuel cells
下载PDF
Electro-deoxidation of V_2O_3 in molten CaCl_2-NaCl-CaO 被引量:6
20
作者 Shu-lan Wang Shi-chao Li +1 位作者 Long-fei Wan Chuan-hua Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第3期212-216,共5页
The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaC1 with additions of CaO, a cat... The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaC1 with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4. 展开更多
关键词 vanadous oxide ELECTRO-DEOXIDATION VANADIUM molten salt electrochemical cells
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部