期刊文献+
共找到460篇文章
< 1 2 23 >
每页显示 20 50 100
Chemical Treatment of Carbon Nanotubes as Electrodes in Electrochemical Double-Layer Capacitors
1
作者 代凯 张登松 +2 位作者 余昺鲲 方建慧 施利毅 《Journal of Shanghai University(English Edition)》 CAS 2005年第6期557-560,共4页
Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containin... Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containing surface groups, which are predominately carboxylic, phenolic and lactonic groups, are introduced into purified carbon nanotubes. Then three kinds of block-form porous tablets of carbon nanotubes are fabricated as electrodes in electrochemical double-layer capacitors. Using mounded mixture comprising carbon nanotubes and binder powders provides these tablets. Comparison of the effect of different processing on the structural performance of the capacitors is specifically investigated. Using chemically treated electrodes, electrochemical double-layer capacitors with a specific capacitance of about 33 F/g are obtained with 38 wt % H2SO4 as the electrolyte. 展开更多
关键词 carbon nanotubes electrochemical double-layer capacitors chemical treatment
下载PDF
Ultrahigh-power electrochemical double-layer capacitors based on structurally integrated 3D carbon tube arrays 被引量:1
2
作者 Fangming Han Guowen Meng +5 位作者 Dou Lin Gan Chen Shiping Zhang Ou Qian Xiaoguang Zhu Bingqing Wei 《Nano Research》 SCIE EI CSCD 2023年第11期12849-12854,共6页
The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tu... The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output. 展开更多
关键词 ultrahigh-power double-layer capacitor structurally integrated three-dimensional(3D)carbon tube smooth ion migration channels
原文传递
Pseudo-capacitance of ruthenium oxide/carbon black composites for electrochemical capacitors 被引量:3
3
作者 Xiaofeng Wang Dianbo Ruan +1 位作者 Peng Wang Yiqiang Lu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期816-821,共6页
Hydrous ruthenium oxide was formed by a new process. The precursor was obtained by mixing the aqueous solutions of RuCl3xH2O and NaHCO3. The addition of NaHCO3 led to the formation of an oxide with extremely fine RuO2... Hydrous ruthenium oxide was formed by a new process. The precursor was obtained by mixing the aqueous solutions of RuCl3xH2O and NaHCO3. The addition of NaHCO3 led to the formation of an oxide with extremely fine RuO2 particles forming a porous network structure in the oxide electrode. Polyethylene glycol was added as a controller to partly inhibit the sol-gel reaction. The rate capacitance of 530 F·g^-1 was measured for the powder formed at an optimal annealing temperature of 210℃. Several details concerning this new material, including crystal structure, particle size as a function of temperature, and electrochemical properties, were also reported. In addition, the rate capacitance of the composite electrode reached 800 F·g^-1 after carbon black was added. By using the modified electrode of a RuO2/carbon black composite electrode, the electrochemical capacitor exhibits high energy density and stable power characteristics. The values of specific energy and maximum specific power of 24 Wh·kg^-1 and 4 kW·kg^-1, respectively, are demonstrated for a cell voltage between 0 and 1 V. 展开更多
关键词 electrochemical capacitor ruthenium oxide polyethylene glycol carbon black
下载PDF
Chemically Modified Ordered Mesoporous Carbon/Polyaniline Composites for Electrochemical Capacitors 被引量:2
4
作者 KONG Llng-bin ZHANG Jing +3 位作者 CAI Jlan-jun YANG Zhen-sheng LUO Yong-chun KANG Long 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第2期295-299,共5页
Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were ... Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors. 展开更多
关键词 Ordered mesoporous carbon POLYANILINE Chemical modification In situ chemical polymerization electrochemical capacitor
下载PDF
Carbon aerogels for electric double-layer capacitors 被引量:1
5
作者 ZHANG Lin LIU Hongbo WANG Ming LIU Wei 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期51-57,共7页
In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional ... In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional supercritical drying. By varying the R/C ratio (molar ratio of resorcinol to catalyst), mesoporous carbon aerogels with high specific surface area were prepared successfully and further investigated as electrode materials for electric double-layer capacitors (EDLCs). The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM. The electrochemical performances of carbon aerogels were investigated by impedance spectroscopy, galvanostatic charge/discharge and cyclic voltammetry methods. The results show that BET surface area and specific capacitance increase with R/C ratio, the maximum values of 727 m2·g-1 and 132 F·g-1 are achieved at R/C ratio will of 300. Increasing R/C ratio increase the average pore size of carbon aerogel electrode, which has improved the rate capability. Furthermore, EDLC with carbon aerogel electrodes has an excellent stability at large discharge current and long cycle life. 展开更多
关键词 carbon aerogel electric double-layer capacitors TEXTURE electrochemical performance
下载PDF
Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes 被引量:5
6
作者 Xiangyang Zhou Hongcheng Li Juan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期35-40,共6页
Activated carbons for electrochemical capacitor electrodes are prepared from soyabean using chemical activation with KOH. The pore size is easily controllable by changing the mass ratio between KOH and carbonized prod... Activated carbons for electrochemical capacitor electrodes are prepared from soyabean using chemical activation with KOH. The pore size is easily controllable by changing the mass ratio between KOH and carbonized product. The as-prepared materials possess a large specific surface area, unique structure, well- developed hierarchical porosity and plentiful heteroatoms(mainly O and N). Thus resulted in its high specific capacitance,good rate capacity and cycling stability. Moreover, attributing to worldwide availability, renewable nature and low-cost, activated carbon prepared from soyabean has a good potential in energy conversion and storage devices. 展开更多
关键词 electrochemical capacitor Activated carbon Soyabean Heteroatoms
下载PDF
Adsorption of K^+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode 被引量:3
7
作者 LI Ying XIE Qiang +2 位作者 YAN Wen WANG Yan ZHANG Zhonghua 《Mining Science and Technology》 EI CAS 2010年第4期551-556,共6页
The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore struc... The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion. 展开更多
关键词 activated carbon adsorption isotherm adsorption kinetics electric double-layer capacitor
下载PDF
Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene 被引量:5
8
作者 Jian Li Xiaoqian Cheng +1 位作者 Alexey Shashurin Michael Keidar 《Graphene》 2012年第1期1-13,共13页
Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as c... Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of carbon nanostructures in electrochemical capacitors, giving an overview regarding the basic mechanism, design, fabrication and achievement of latest research progresses for electrochemical capacitors based on carbon nanotubes, graphene and their composites. Their current challenges and future prospects are also discussed. 展开更多
关键词 electrochemical capacitors ULTRAcapacitorS SUPERcapacitorS Carbon NANOTUBES GRAPHENE
下载PDF
The key challenges and future opportunities of electrochemical capacitors 被引量:1
9
作者 Fangyan Liu Xinliang Feng Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期459-461,I0012,共4页
Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electroni... Electrochemical capacitors(ECs)with unique merits of fast charge/discharge rate and long cyclability are one of the representative electrochemical energy storage systems,possessing wide applications in power electronics and automotive transportation,etc.[1,2].Furthermore. 展开更多
关键词 electrochemical capacitors Electrical double layer capacitors Pseudocapacitors Li-ion capacitors Microscale electrochemical capacitors
下载PDF
AC Line Filter Electrochemical Capacitors:Materials,Morphology,and Configuration 被引量:2
10
作者 Haichao Tang Yang Tian +5 位作者 Zhongshuai Wu Yujia Zeng Yang Wang Yang Hou Zhizhen Ye Jianguo Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1060-1083,共24页
Recently,more and more supercapacitors(SCs)have been developed as AC line filter capacitors,which are generally named AC line filter electrochemical capacitors(FECs).Compared to traditional bulky aluminum electrolytic... Recently,more and more supercapacitors(SCs)have been developed as AC line filter capacitors,which are generally named AC line filter electrochemical capacitors(FECs).Compared to traditional bulky aluminum electrolytic capacitors(AECs),FECs have higher capacity and lower space occupancy,which makes them a strong competitor.However,different from the common SCs for energy storage,it is necessary to consider the frequency response of the SCs for AC line filtering,where the contradiction between frequency response and specific capacitance is a challenge.The researchers have proposed different solutions from the perspective of materials,morphology,and configuration for this challenge.Based on the above background,in this review,we briefly introduce the principle and parameters of AC line filter electrochemical capacitors.We systematically summarize the state-of-the-art progresses of FECs and discuss their possible application and development in the future.The development of FECs can greatly promote the planarization,integration,and miniaturization of filter capacitors,and provide a new solution for the utilization of green and unstable energy. 展开更多
关键词 AC line filtering fast response filter electrochemical capacitors specific capacitance SUPERcapacitorS
下载PDF
Nanosized Nickel Oxides Derived from the Citrate Gel Process and Performances for Electrochemical Capacitors 被引量:1
11
作者 沈湘黔 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期179-182,共4页
Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ... Nanosized nickel oxide powders were prepared by thermal decomposition of the nickel citrate gel precursors. The thermal decomposition and powder materials derived from calcination of these gel precursors with various ratios of citric acid (CA) to nickel at different temperatures and times were characterized by thermal analysis (TG/DTA), scanning electron microscopy (SEM), x-ray diffraction (XRD), and measurement of specific surface area (BET) with porosity analyses. The optimized processing conditions of calcination temperature 400℃ for 1 hour with the CA/Ni ratio of 1.2, were determined to produce the nanosized nickel oxide pow- ders with a high specific surface area of 181 m^2/g, nanometer particle sizes of 15-25 nm, micro-pore diameter distribution between 4-10 nm. The capacitance characteristics of the nanosized nickel oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) exhibiting both a double-layer capacitance and a faradaic pseudocapacitance. The nanosized nickel oxide electrode shows a high cyclic stability and is promising for high performance electrochemical capacitors. 展开更多
关键词 citrate gel process nanosized nickel oxide electrode electrochemical capacitors capaci- tance characteristics
下载PDF
Porous monoliths of 3D graphene for electric double-layer supercapacitors 被引量:2
12
作者 Jinjue Zeng Chenyang Xu +2 位作者 Tian Gao Xiangfen Jiang Xue‐Bin Wang 《Carbon Energy》 CAS 2021年第2期193-224,共32页
For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectu... For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectures,3D networks,or aerogels.The intersupported structure of porous monolithic 3D graphene(3DG)can prevent aggregation or restacking of graphene individuals,and the interconnected sp^(2) network of 3DG not only can provide the highway for the transport of electron/phonon but also can present continual cavities/channels for mass transfer.This review summarizes the synthesis methodology of 3DG porous monoliths and highlights the application for electric double-layer capacitors.Present challenges and future prospects about the manufacture and application of 3DG are also discussed. 展开更多
关键词 3D graphene electric double-layer capacitor graphene aerogel porous monolith supercapacitor
下载PDF
Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor 被引量:4
13
作者 周宏明 孙文佼 李荐 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2435-2439,共5页
A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-di... A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure. 展开更多
关键词 spiro-type quaternary ammonium salt synthesis electrolyte electric double-layer capacitor
下载PDF
Raman probing carbon&aqueous electrolytes interfaces and molecular dynamics simulations towards understanding electrochemical properties under polarization conditions in supercapacitors 被引量:1
14
作者 Rafael Vicentini Leonardo M.Da Silva +7 位作者 Débora V.Franco Willian G.Nunes Juliane Fiates Gustavo Doubek Luís F.M.Franco Renato G.Freitas Cristiano Fantini Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期279-292,共14页
Raman probing of carbon electrode and electrolyte under dynamic conditions is performed here using different aqueous electrolytes to elucidate the fundamental events occurring in electrochemical supercapacitor during ... Raman probing of carbon electrode and electrolyte under dynamic conditions is performed here using different aqueous electrolytes to elucidate the fundamental events occurring in electrochemical supercapacitor during charge–discharge processes.The areal capacitance ranges from 1.54 to 2.31μF cm^(-2)μm and it is determined using different techniques.These findings indicate that the Helmholtz capacitance governs the overall charge-storage process instead of the space charge(quantum)capacitance commonly verified for HOPG electrodes in the range of~3 to 7μF cm^(-2).Molecular dynamics simulations are employed to elucidate the origin of the reversible Raman spectral changes during the charge–discharge processes.A correlation is verified between the reversible Raman shift and the surface excesses of the different ionic species.A theoretical framework is presented to relate the effect of the applied potential on the Raman shift and its correlation with the surface ionic charge.It is proposed that the Raman shift is governed by the interaction of solvated cations with graphite promoted by polarization conditions.It is the first time that a comparative study on different aqueous electrolyte p H and cation ion size has been performed tracking the Raman spectra change under dynamic polarization conditions and contrasting with comprehensive electrochemistry and dynamic molecular simulations studies.This study shines lights onto the charge-storage mechanism with evidence of Kohn anomaly reduction in the carbon electrode during the reversible adsorption/desorption and insertion/extraction of ionic species. 展开更多
关键词 Defect reorganization in graphite Surface excess of charge Operando Raman studies Electrical double-layer capacitors
下载PDF
Intedrcalation in Two-Dimensional Transition Metal Carbides and Nitrides(MXenes) toward Electrochemical Capacitor and Beyond 被引量:3
15
作者 Jianmin Li Hao Wang Xu Xiao 《Energy & Environmental Materials》 2020年第3期306-322,共17页
Since its discovery in 2011,the emerging family of two-dimensional(2D)transition metal carbides,nitrides,and carbonitrides(denoted as MXenes)has shown tremendous promise in the field of energy storages,especially elec... Since its discovery in 2011,the emerging family of two-dimensional(2D)transition metal carbides,nitrides,and carbonitrides(denoted as MXenes)has shown tremendous promise in the field of energy storages,especially electrochemical capacitors(ECs).The intercalation of foreign species,including but not limited to proton,cations,organic ions,and solvents,is demonstrated as one of the dominant facts during the energy storage process of MXenes,through which interlayer spacing of MXenes can be reversibly tuned,followed with reversible redox reactions on the surface of MXenes.Such a mechanism provides MXenes extremely high capacitance up to 1500 F cm-3,in aqueous acidic electrolyte.In addition,because of the versatile terminations on their surface,the intercalation of ions into MXenes can simultaneously induce the reversible transformation of their electronic structure to trigger some other phenomenon,for example,electrochromic effect,which has great potential on electrochromic smart window—an extended application of ECs.Accordingly,regulating and facilitating the intercalation in MXenes is of great significance for MXene-based ECs.In this review,we summarize the recent progress on the intercalation in MXenes towards ECs,discussing on the intercalated species,working mechanisms,and methods to promote the intercalation.Furthermore,we prospect the future research directions of intercalation of MXenes in ECs,such as the combination of simulation and experiment on finding the best intercalation species,precisely controlling the interlayer spacing and beyond,to boost the electrochemical performance of MXene toward practical applications and multi-functional devices. 展开更多
关键词 electrochemical capacitors INTERCALATION IONS MXenes solvents
下载PDF
Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors
16
作者 dianxin ZHOU Xiangqian SHEN Maoxiang JING 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期803-806,共4页
Nanosized Ni-Mn oxide powders have been successfully citrate gel precursors. The powder materials derived from prepared by thermal decomposition of the Ni-Mn calcination of the gel precursors with various molar ratios... Nanosized Ni-Mn oxide powders have been successfully citrate gel precursors. The powder materials derived from prepared by thermal decomposition of the Ni-Mn calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET). The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m^2/g and nanometer particle sizes of 15-30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors. 展开更多
关键词 Citrate gel process Nanosized Ni-Mn oxide electrode electrochemical capacitor Capacitance characteristics
下载PDF
A review of neutral pH polymer electrolytes for electrochemical capacitors:Transitioning from liquid to solid devices 被引量:1
17
作者 Alvin Virya Keryn Lian 《Materials Reports(Energy)》 2021年第1期26-44,共19页
The development of neutral pH polymer electrolytes has enabled high-performance solid-state,thin,and flexible electrochemical capacitors(ECs)to provide power for future consumer electronics and Internet-of-Thing devic... The development of neutral pH polymer electrolytes has enabled high-performance solid-state,thin,and flexible electrochemical capacitors(ECs)to provide power for future consumer electronics and Internet-of-Thing devices.Notwithstanding their promising prospect,there is still some lack of understandings or disconnections from fundamental science to practical applications of these electrolytes.In this review,we provide an overview of stateof-the-art studies on ECs with neutral pH electrolytes in both liquid and solid configurations.Starting from the fundamental studies on the voltage window and ion conduction of salt species in liquid solution to polymer electrolytes,key considerations in developing neutral pH polymer electrolytes are discussed.The performance of the polymer electrolytes along with their enabled solid symmetric and asymmetric EC devices,as well as some enhanced functionalities are presented.The future directions for research on neutral pH polymer electrolytes are proposed,expected to provide reference for further enriching the fundamental knowledge and improving the device performances. 展开更多
关键词 electrochemical capacitor SUPERcapacitor ELECTROLYTE Neutral pH Aqueous-based electrolyte Polymer electrolyte Solid-state device Flexible device
下载PDF
Aplication of Corncob-Based Activated Carbon as Electrode Material for Electric Double-Layer Capacitors
18
作者 王玉新 刘炳泗 +1 位作者 时志强 刘凤丹 《Transactions of Tianjin University》 EI CAS 2012年第3期217-223,共7页
To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure prope... To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure properties of which were determined based on N2 adsorption isotherm at 77 K. The results show that the expansion pretreatment for corncobs is beneficial to the preparation of ACs with high surface area. The specific surface area of the AC derived from corncob with expansion pretreatment (AC-1) is 32.5% larger than that without expansion pretreatment (AC-2). Furthermore, to probe the potential application of corncob-based ACs in electric double-layer capacitor (EDLC), the prepared ACs were used as electrode materials to assemble EDLC, and its electrochemical performance was investi- gated. The results indicate that the specific capacitance of AC-I is 276 F/g at 50 mA/g, which increases by 27% com- pared with that of AC-2 (217 F/g). As electrode materials, AC-1 presents a better electrochemical performance than AC-2, including a higher voltage maintenance ratio and a lower leakage current. 展开更多
关键词 corncob-based activated carbon electrode material electric double-layer capacitor
下载PDF
Alternatingly stacked thin film electrodes-based compact aqueous hybrid electrochemical capacitors for hundred-volts AC line filtering
19
作者 Lixia Wang Lingyu Zhao +8 位作者 Meirong Song Lixia Xie Xiaopeng Wang Xin Li Yanjie Huang Min Wei Qiu Jin Xianglong Meng Yang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期158-168,I0005,共12页
Filtering capacitor with compact configuration and a wide range of operating voltage has been attracting increasing attention for the smooth conversion of the electric signal in modern circuits.Lossless integration of... Filtering capacitor with compact configuration and a wide range of operating voltage has been attracting increasing attention for the smooth conversion of the electric signal in modern circuits.Lossless integration of capacitor units can be regarded as one of the efficient ways to achieve a wider voltage range,which has not yet been fully conquered due to the lack of rational designs of the electrode structure and integration technology.This study presents an alternatingly stacked assemble technology to conveniently fabricate compact aqueous hybrid integrated filtering capacitors on a large scale,in which a unit consists of rGO/MXene composite film as a negative electrode and PEDOT:PSS based film as a positive electrode.Benefiting from the synergistic effect of rGO and MXene components,and morphological characteristics of PEDOT:PSS,the capacitor unit exhibits outstanding AC line filtering with a large areal specific energy density of 1,015 μF V^(2)cm^(-2)(0.28 μW h cm^(-2)) at 120 Hz.After rational integration,the assembled capacitors present compact/lightweight configuration and lossless frequency response,as reflected by almost constant resistor-capacitor time constant of 0.2 ms and dissipation factor of 15% at120 Hz,identical to those of the single capacitor unit.Apart from standing alone steadily on a flower,a small volume(only 8.1 cm^(3)) of the integrated capacitor with 70 units connected in series achieves hundred-volts alternating current line filtering,which is superior to most reported filtering capacitors with sandwich configuration.This study provides insight into the fabrication and application of compact/ultralight filtering capacitors with lossless frequency response,and a wide range of operating voltage. 展开更多
关键词 Alternatingly stacked assembly Lossless integration Aqueous hybrid electrochemical capacitor Synergistic effect Morphological characteristics COMPACT Hundred-volts AC linefiltering
下载PDF
Structural and Electrochemical Performances of α-MnO2 Doped with Tin for Supercapacitors
20
作者 黎阳 LI Jing +2 位作者 XIE Huaqing YANG Fan ZHOU Yuhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期237-244,共8页
To improve the electrochemical performances of α-MnO2 as electrode materials for supercapacitors, Sn-doped α-MnO2 in the presence of the doping amount of 1%-4% was successfully synthesized by hydrothermal method. As... To improve the electrochemical performances of α-MnO2 as electrode materials for supercapacitors, Sn-doped α-MnO2 in the presence of the doping amount of 1%-4% was successfully synthesized by hydrothermal method. As-prepared α-MnO2 presents nanorod shape and no other impurities exist. By ultraviolet-visible absorption spectroscopy, it is convinced that the band gaps of α-MnO2 decrease with increasing Sn-doping amount. Cyclic voltammetry investigation indicates that undoped and doped α-MnO2 all have regular capacitive response. As the scan rate enlarged, the profiles of curves gradually deviate from rectangle. Compared with undoped α-MnO2, doped α-MnO2 has larger specific capacitance. The specific capacitance of 3% doped α-MnO2 reaches 241.0 F/g while undoped α-MnO2 only has 173.0 F/g under 50 m A/g current density in galvanostatical charge-discharge measurement. Enhanced conductivity by Sn-doping is considered to account for doped sample's enhanced electrochemical specific capacitance. 展开更多
关键词 doping capacitors electrochemical characterizations electronic conductivities
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部