Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr...Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.展开更多
Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a c...Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities,leading to prohibitive costs and efforts for data collection.In response to this issue,this study proposes a convolutional neural network(CNN)based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input.More importantly,an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process,thereby significantly alleviating the cost of collecting training data.Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method.The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given.However,the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available.In this case,the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%.A further validation under different current rates and states of charge confirms the effectiveness of the proposed method.Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks.展开更多
Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ...Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.展开更多
Electrochromic materials are of great interest for their potential in eyewear protection and data storage devices, as they change colors in response to electrochemical switching. While many of the systems currently us...Electrochromic materials are of great interest for their potential in eyewear protection and data storage devices, as they change colors in response to electrochemical switching. While many of the systems currently used are based on inorganic materials, organic materials such as triazenes have emerged as viable alternatives due to their unique properties, including optical properties. Triazenes are a class of organic compounds with three consecutive nitrogen atoms in an acyclic arrangement, and they have been used for a variety of applications in medicinal and synthetic chemistry. However, the effects of solvents on the UV-visible absorption spectrum of triazenes have not been fully investigated. The neutral molecules of 3,3-diisopropyl-1-phenyltriazene and 1-(4-chlorophenyl)-3-cyclopentyltriazene in acetonitrile, the UV-visible spectra corresponded respectively to HOMO → LUMO transitions with a large maximum absorption at 299.74 nm (4.1364 eV) and 299.57 nm (4.1387 eV) and the most intense oscillator strength (f = 0.6988) and (f = 0.7372). These results suggest that the electronic transitions of the compounds are highly influenced by the nature of the substituents on the triazene unit, as well as the solvent used in the experiment. The redox couple 0.92 and -0.44 V/Ag/AgCl is attributed to the phenyl group. Compound III showed an oxidation and reduction peak respectively -0.27 and -0.8 V/Ag/AgCl attributed to the phenyl molecule. The study concluded that all three compounds were electroactive and exhibited reversible characteristics with oxidizing/reducing couples. This study aims to contribute to research on the optical properties of triazenes compounds and the application of quantum chemical calculation methods for understanding their molecular structures. By investigating the solute-solvent interactions occurring in the solvation shell of the solutes, we aim to gain insights into the effects of solvents on the UV-visible absorption spectrum of triazenes. Our findings may have implications for the development of functionalized triazenes as potential electrochromic materials.展开更多
Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been ...Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.展开更多
The passive film formed on 2205 duplex stainless steel(DSS) in 0.5 M NaHCO3+0.5 M NaCl aqueous solution was characterized by electrochemical measurements,including potentiodynamic anodic polarization and dynamic el...The passive film formed on 2205 duplex stainless steel(DSS) in 0.5 M NaHCO3+0.5 M NaCl aqueous solution was characterized by electrochemical measurements,including potentiodynamic anodic polarization and dynamic electrochemical impedance spectroscopy(DEIS).The results demonstrate that there is a great difference between the passive film evolutions of ferrite and austenite.The impedance values of ferrite are higher than those of austenite.The impedance peaks of ferritic and austenitic phases correspond to the potential of 0.15 and 0.25 V in the low potential range and correspond to 0.8 and 0.75 V in the high potential range.The evolutions of the capacitance of both phases are reverse compared to the evolutions of impedance.The thickness variations obtained from capacitance agree well with those of impedance analysis.The results can be used to explain why pitting corrosion occurs more easily in austenite phase than in ferrite phase.展开更多
Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were propo...Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were proposed, which contain 6 meaningful resistance and reactance parameters. Considering the conductive properties of soils and dispersion effects, mathematical equations for impedance under various circuit models were deduced and studied. The mathematical expression presents two semicircles for theoretical EIS Nyquist spectrum, in which the center of one semicircle is degraded to simply the equivalent model. Based on the measured parameters of EIS Nyquist spectrum, meaningful soil parameters can easily be determined. Additionally, EIS was used to investigate the soil properties with different water contents along with the mathematical relationships and mechanism between the physical parameters and water content. Magnitude of the impedance decreases with the increase of testing frequency and water content for Bode graphs. The proposed model would help us to better understand the soil microstructure and properties and offer more reasonable explanations for EIS spectra.展开更多
Pitting corrosion of 316L stainless steel in NaCl solution was investigated by means of staircase potential electrochemical impedance spectroscopy(SPEIS).The investigation focused on the transition of stainless stee...Pitting corrosion of 316L stainless steel in NaCl solution was investigated by means of staircase potential electrochemical impedance spectroscopy(SPEIS).The investigation focused on the transition of stainless steel from the passive state to pitting corrosion.Based on the evolution of electrical parameters of the equivalent electrical circuit,it is suggested that the most probable mechanism of pit creation is the film breaking model.The result demonstrates that staircase potential electrochemical impedance spectroscopy is an effective method for the investigation of pitting corrosion.展开更多
The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), ...The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scan- ning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally de- creased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer forma- tion, and integral layer formation.展开更多
The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficie...The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficiency of modified lignosulphonate GCL2 is a great improvement on that of lignosulphonate. The maximum inhibition efficiency of GCL2 reaches 99.21% at the concentration of 400mg·L^-1 at 303K. The corrosion inhibition of GCL2 is attributed to forming adsorption film on the metal surface for the electrochemical impedance spectroscopy in GCL2 solution shows more than one time-constant.Moreover,results also indicate that it is more efficient in stirring solution than in still solution for GCL2 because the constant of adsorption in stirring solution is much larger than that in still solution. The adsorption of inhibitor GCL2 follows Langmuir's adsorption isotherm.展开更多
The corrosion behaviors of Fe-Cr alloy under three different pH values solutions with C1- and SO42- were investigated by localized electrochemical impedance spectroscopy (LEIS) measurements and the corrosion product...The corrosion behaviors of Fe-Cr alloy under three different pH values solutions with C1- and SO42- were investigated by localized electrochemical impedance spectroscopy (LEIS) measurements and the corrosion products were analyzed by laser Raman spectrometry. The results show that the high corrosion resistance of Fe-Cr Alloy is attributed to a passive film which is formed more easily when the alloy contains a large quantity of Cr element. However, its corrosion resistance varies in the solutions with different pH values, especially in the initial corrosion. The average impedance values in neutral and alkaline solution are much higher than that in acidic solution because the passive film is more likely to dissolve in the acidic condition. Moreover, the destructive effect of C1- and SO42 ions on the passive film is also demonstrated in corrosion process through the change of the impedance value with the steeping time.展开更多
The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly anaIyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated t...The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly anaIyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated the degradation of phenolic epoxy coating/tinplate system by EIS and the degradation coefficient value, which correlates well with the results of breakpoint frequency and variation of phase angle at 10 Hz. Furthermore, the degradation process was confirmed by scanning electron microscope (SEM) and scanning probe microscopy (SPM). It is concluded that degradation coefficient can be used for the fast evaluation of degradation degree of organic coatings in practical appli- cations.展开更多
The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and...The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and surface analysis methods. Electrochemical impedance spectroscopy (EIS) of 1Cr18Ni9Ti was measured in the solutions with and without SRB at the culture time of 2, 4, 8 d, respectively. The measurement used two test methods, the nonimmersion electrode method and the immersion electrode method. It was found that the polarization resistance (Rp) of 1Cr18Ni9Ti in the solutions without SRB is the greatest for each test method. When using the nonimmersion electrode method, Rp shifts negatively at first and then positively, and the time constant is only one. Although using the immersion electrode method, the Rp shifts positively at first and then negatively, and the time constant also changes when the biofilm forms. The biofilm observed through SEM is with pores. It was demonstrated that SRB has accelerated corrosion action on 1Cr18Ni9Ti. The protection effect of the biofilm on the electrode depends on the compact degree of the film.展开更多
N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to...N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.展开更多
The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for ...The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for electrochemical ammonia synthesis from nitrate reduction.To maintain the hybrid Cu^(+)/Cu~0 state at negative reaction potentials,hydrophilic zeolite is used to modify Cu/Cu_(2)O electrocatalyst,which demonstrates an impressive NH_(3) production rate of 41.65 mg h^(-1) cm^(-2)with ~100% Faradaic efficiency of ammonia synthesis at-0.6 V vs.RHE.In-situ Raman spectroscopy unveil the high activity originates from the zeolite reconstruction at the electrode–electrolyte interface,which protects the valence state of Cu~0/Cu^(+) site under negative potential and promotes electrochemical activity towards NH_(3) synthesis.展开更多
Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocata...Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocatalysis.Herein,we demonstrate an in-situ surface-enhanced Raman spectroscopic method by using a three-electrode spectroelectrochemical cell towards characterizing the electrode/polyelectrolyte interfaces.The Ag/AgCl and Ag/Ag_(2)O electrodes are used as the reference electrode in the acidic and the alkaline systems,respectively.The working electrode is made of a transparent carbon thin film which loads the electrocatalysts.The applications of this method are demonstrated through the in-situ characterizations of the p-methylthiophenol adsorbed on the Au and Pt and the electrochemical oxidation of Au on polyelectrolyte membranes.The potential-dependent spectral features of these two systems show that this method is a powerful tool for investigating the electrode/polyelectrolyte interfaces in electrocatalysis.展开更多
The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfo...The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfoliation occurs,two ca pacitive arcs appear in the EIS at high-mediate frequency and mediate-low freq uency respectively. The exfoliation-attacked alloy surface consists of two part s,an original flat alloy surface and a new inter-face exposed to EXCO solution due to the exfoliation. The capacitance corresponding to the new exfoliation in ter-face increases approximately linearly with time at early exfoliation stage,due to the enlargement of the new inter-face. Then it maintains stable,due to the corrosion product covering on the new inter-face. The exfoliation suscepti bility can be judged through the average slope of the capacitance vs time curve of the early exfoliation stage. This average slope of the rolled 8090 alloy is m uch higher than that of the peak-aged 8090 alloy,accordingly the rolled 8090 a lloy is more susceptible to exfoliation than the peak-aged 8090 alloy.展开更多
The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The res...The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The results show that once the exfoliation occurs, the EIS is composed of two capacitive arcs at high frequency and mediate low frequency; among them, the capacitance corresponding to high frequency ( C 1) is originated from original flat alloy surface, while the capacitance corresponding to mediate low frequency ( C 2) from new interface exposed to EXCO solution due to the exfoliation and the ratio of C 2 to C 1 increases with exfoliation degree. It is advanced that the exfoliation degree can be quantitatively judged through this ratio.展开更多
The flotation behavior of jamesonite was investigated with sodium diethyldithiocarbamate(DDTC) as a collector. The results show that jamesonite has good floatability from pH 2 to pH 13. The flotation of jamesonite is ...The flotation behavior of jamesonite was investigated with sodium diethyldithiocarbamate(DDTC) as a collector. The results show that jamesonite has good floatability from pH 2 to pH 13. The flotation of jamesonite is also dependent on the pulp potential. The potential-pH range for jamesonite flotation is established. The FTIR spectroscopy analysis shows that the major adsorption product of sodium diethyldithiocarbamate on jamesonite is lead diethyldithiocarbamate. The intensity of the FTIR signals of metal diethyldithiocarbamate adsorption on jamesonite and the flotation response of jamesonite are correlated with the pulp potential.展开更多
Plasma electrolytic oxidation (PEO) coatings are prepared on aluminium with graphite powders added into the electrolyte. The scanning electron microscopy (SEM) coupled with an energy dispersive x-ray analysis syst...Plasma electrolytic oxidation (PEO) coatings are prepared on aluminium with graphite powders added into the electrolyte. The scanning electron microscopy (SEM) coupled with an energy dispersive x-ray analysis system (EDX) is used to characterize the surface and the cross-section morphologies of the coatings. The electrochemical impedance spectroscopy (EIS) is used not only to evaluate the corrosion resistance but also to analyse the structure of the coating. Results show that graphite powders are embedded in the PEO coating. The corrosion resistances of both the inner barrier and the outer porous layer are greatly improved, and the EIS could give some valuable detailed information about the coating structure.展开更多
基金supported by the Chinese Scholarship Council(Nos.202208320055 and 202108320111)the support from the energy department of Aalborg University was acknowledged.
文摘Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.
基金supported by the National Key R&D Program of China(2021YFB2402002)the National Natural Science Foundation of China(51922006 and 51877009)+1 种基金the China Postdoctoral Science Foundation(BX2021035 and 2022M710379)the Beijing Natural Science Foundation(Grant No.L223013)。
文摘Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities,leading to prohibitive costs and efforts for data collection.In response to this issue,this study proposes a convolutional neural network(CNN)based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input.More importantly,an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process,thereby significantly alleviating the cost of collecting training data.Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method.The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given.However,the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available.In this case,the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%.A further validation under different current rates and states of charge confirms the effectiveness of the proposed method.Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks.
基金the National Basic Research Development of China(2011CB936003)the National Natural Science Foundation of China(50971116)。
文摘Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.
文摘Electrochromic materials are of great interest for their potential in eyewear protection and data storage devices, as they change colors in response to electrochemical switching. While many of the systems currently used are based on inorganic materials, organic materials such as triazenes have emerged as viable alternatives due to their unique properties, including optical properties. Triazenes are a class of organic compounds with three consecutive nitrogen atoms in an acyclic arrangement, and they have been used for a variety of applications in medicinal and synthetic chemistry. However, the effects of solvents on the UV-visible absorption spectrum of triazenes have not been fully investigated. The neutral molecules of 3,3-diisopropyl-1-phenyltriazene and 1-(4-chlorophenyl)-3-cyclopentyltriazene in acetonitrile, the UV-visible spectra corresponded respectively to HOMO → LUMO transitions with a large maximum absorption at 299.74 nm (4.1364 eV) and 299.57 nm (4.1387 eV) and the most intense oscillator strength (f = 0.6988) and (f = 0.7372). These results suggest that the electronic transitions of the compounds are highly influenced by the nature of the substituents on the triazene unit, as well as the solvent used in the experiment. The redox couple 0.92 and -0.44 V/Ag/AgCl is attributed to the phenyl group. Compound III showed an oxidation and reduction peak respectively -0.27 and -0.8 V/Ag/AgCl attributed to the phenyl molecule. The study concluded that all three compounds were electroactive and exhibited reversible characteristics with oxidizing/reducing couples. This study aims to contribute to research on the optical properties of triazenes compounds and the application of quantum chemical calculation methods for understanding their molecular structures. By investigating the solute-solvent interactions occurring in the solvation shell of the solutes, we aim to gain insights into the effects of solvents on the UV-visible absorption spectrum of triazenes. Our findings may have implications for the development of functionalized triazenes as potential electrochromic materials.
文摘Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.
基金supported by the National Natural Science Foundation of China(No.50871020)
文摘The passive film formed on 2205 duplex stainless steel(DSS) in 0.5 M NaHCO3+0.5 M NaCl aqueous solution was characterized by electrochemical measurements,including potentiodynamic anodic polarization and dynamic electrochemical impedance spectroscopy(DEIS).The results demonstrate that there is a great difference between the passive film evolutions of ferrite and austenite.The impedance values of ferrite are higher than those of austenite.The impedance peaks of ferritic and austenitic phases correspond to the potential of 0.15 and 0.25 V in the low potential range and correspond to 0.8 and 0.75 V in the high potential range.The evolutions of the capacitance of both phases are reverse compared to the evolutions of impedance.The thickness variations obtained from capacitance agree well with those of impedance analysis.The results can be used to explain why pitting corrosion occurs more easily in austenite phase than in ferrite phase.
基金Projects(5120833351078253)supported by the National Natural Science Foundation of China+4 种基金Projects(2014011036-12014131019TYUT2014YQ017OIT2015)supported by the Natural Science Foundation of Shanxi ProvinceChina
文摘Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were proposed, which contain 6 meaningful resistance and reactance parameters. Considering the conductive properties of soils and dispersion effects, mathematical equations for impedance under various circuit models were deduced and studied. The mathematical expression presents two semicircles for theoretical EIS Nyquist spectrum, in which the center of one semicircle is degraded to simply the equivalent model. Based on the measured parameters of EIS Nyquist spectrum, meaningful soil parameters can easily be determined. Additionally, EIS was used to investigate the soil properties with different water contents along with the mathematical relationships and mechanism between the physical parameters and water content. Magnitude of the impedance decreases with the increase of testing frequency and water content for Bode graphs. The proposed model would help us to better understand the soil microstructure and properties and offer more reasonable explanations for EIS spectra.
文摘Pitting corrosion of 316L stainless steel in NaCl solution was investigated by means of staircase potential electrochemical impedance spectroscopy(SPEIS).The investigation focused on the transition of stainless steel from the passive state to pitting corrosion.Based on the evolution of electrical parameters of the equivalent electrical circuit,it is suggested that the most probable mechanism of pit creation is the film breaking model.The result demonstrates that staircase potential electrochemical impedance spectroscopy is an effective method for the investigation of pitting corrosion.
基金financial support from the Natural Science Foundation of China (No. 51371034)
文摘The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scan- ning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally de- creased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer forma- tion, and integral layer formation.
基金supported by the National Natural Science Foundation of China(No.20276024)the Guangdong Provincial Laboratory of Green Chemical Technology
文摘The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficiency of modified lignosulphonate GCL2 is a great improvement on that of lignosulphonate. The maximum inhibition efficiency of GCL2 reaches 99.21% at the concentration of 400mg·L^-1 at 303K. The corrosion inhibition of GCL2 is attributed to forming adsorption film on the metal surface for the electrochemical impedance spectroscopy in GCL2 solution shows more than one time-constant.Moreover,results also indicate that it is more efficient in stirring solution than in still solution for GCL2 because the constant of adsorption in stirring solution is much larger than that in still solution. The adsorption of inhibitor GCL2 follows Langmuir's adsorption isotherm.
基金National Natural Science Foundation of China (No. 50871021)
文摘The corrosion behaviors of Fe-Cr alloy under three different pH values solutions with C1- and SO42- were investigated by localized electrochemical impedance spectroscopy (LEIS) measurements and the corrosion products were analyzed by laser Raman spectrometry. The results show that the high corrosion resistance of Fe-Cr Alloy is attributed to a passive film which is formed more easily when the alloy contains a large quantity of Cr element. However, its corrosion resistance varies in the solutions with different pH values, especially in the initial corrosion. The average impedance values in neutral and alkaline solution are much higher than that in acidic solution because the passive film is more likely to dissolve in the acidic condition. Moreover, the destructive effect of C1- and SO42 ions on the passive film is also demonstrated in corrosion process through the change of the impedance value with the steeping time.
基金Supported by Major State Basic Research Program of China ("973"Program,No. 2011CB610500)
文摘The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly anaIyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated the degradation of phenolic epoxy coating/tinplate system by EIS and the degradation coefficient value, which correlates well with the results of breakpoint frequency and variation of phase angle at 10 Hz. Furthermore, the degradation process was confirmed by scanning electron microscope (SEM) and scanning probe microscopy (SPM). It is concluded that degradation coefficient can be used for the fast evaluation of degradation degree of organic coatings in practical appli- cations.
文摘The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and surface analysis methods. Electrochemical impedance spectroscopy (EIS) of 1Cr18Ni9Ti was measured in the solutions with and without SRB at the culture time of 2, 4, 8 d, respectively. The measurement used two test methods, the nonimmersion electrode method and the immersion electrode method. It was found that the polarization resistance (Rp) of 1Cr18Ni9Ti in the solutions without SRB is the greatest for each test method. When using the nonimmersion electrode method, Rp shifts negatively at first and then positively, and the time constant is only one. Although using the immersion electrode method, the Rp shifts positively at first and then negatively, and the time constant also changes when the biofilm forms. The biofilm observed through SEM is with pores. It was demonstrated that SRB has accelerated corrosion action on 1Cr18Ni9Ti. The protection effect of the biofilm on the electrode depends on the compact degree of the film.
基金the National Science Foundation for Excellent Young Scholars of China(21922815)the National Natural Science Foundation of China(22179139)+2 种基金the National Key Research and Development Program of China(2020YFB1505800)the Youth Innovation Promotion Association of CAS(2019178)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the CAS(XDA21000000)。
文摘N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.
基金the support from the Fundamental Research Funds for the Central Universities (2022LHJH01-03, 2022ZFJH04, 2022QZJH14)Pioneer R&D Program of Zhejiang Province (2022C03040)+1 种基金the Ecological civilization project, Zhejiang Universitythe support from A Project Supported by Scientific Research Fund of Zhejiang University (XY2022013)。
文摘The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for electrochemical ammonia synthesis from nitrate reduction.To maintain the hybrid Cu^(+)/Cu~0 state at negative reaction potentials,hydrophilic zeolite is used to modify Cu/Cu_(2)O electrocatalyst,which demonstrates an impressive NH_(3) production rate of 41.65 mg h^(-1) cm^(-2)with ~100% Faradaic efficiency of ammonia synthesis at-0.6 V vs.RHE.In-situ Raman spectroscopy unveil the high activity originates from the zeolite reconstruction at the electrode–electrolyte interface,which protects the valence state of Cu~0/Cu^(+) site under negative potential and promotes electrochemical activity towards NH_(3) synthesis.
文摘Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocatalysis.Herein,we demonstrate an in-situ surface-enhanced Raman spectroscopic method by using a three-electrode spectroelectrochemical cell towards characterizing the electrode/polyelectrolyte interfaces.The Ag/AgCl and Ag/Ag_(2)O electrodes are used as the reference electrode in the acidic and the alkaline systems,respectively.The working electrode is made of a transparent carbon thin film which loads the electrocatalysts.The applications of this method are demonstrated through the in-situ characterizations of the p-methylthiophenol adsorbed on the Au and Pt and the electrochemical oxidation of Au on polyelectrolyte membranes.The potential-dependent spectral features of these two systems show that this method is a powerful tool for investigating the electrode/polyelectrolyte interfaces in electrocatalysis.
文摘The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfoliation occurs,two ca pacitive arcs appear in the EIS at high-mediate frequency and mediate-low freq uency respectively. The exfoliation-attacked alloy surface consists of two part s,an original flat alloy surface and a new inter-face exposed to EXCO solution due to the exfoliation. The capacitance corresponding to the new exfoliation in ter-face increases approximately linearly with time at early exfoliation stage,due to the enlargement of the new inter-face. Then it maintains stable,due to the corrosion product covering on the new inter-face. The exfoliation suscepti bility can be judged through the average slope of the capacitance vs time curve of the early exfoliation stage. This average slope of the rolled 8090 alloy is m uch higher than that of the peak-aged 8090 alloy,accordingly the rolled 8090 a lloy is more susceptible to exfoliation than the peak-aged 8090 alloy.
文摘The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The results show that once the exfoliation occurs, the EIS is composed of two capacitive arcs at high frequency and mediate low frequency; among them, the capacitance corresponding to high frequency ( C 1) is originated from original flat alloy surface, while the capacitance corresponding to mediate low frequency ( C 2) from new interface exposed to EXCO solution due to the exfoliation and the ratio of C 2 to C 1 increases with exfoliation degree. It is advanced that the exfoliation degree can be quantitatively judged through this ratio.
基金Project(50234010) supported by the National Natural Science Foundation of China
文摘The flotation behavior of jamesonite was investigated with sodium diethyldithiocarbamate(DDTC) as a collector. The results show that jamesonite has good floatability from pH 2 to pH 13. The flotation of jamesonite is also dependent on the pulp potential. The potential-pH range for jamesonite flotation is established. The FTIR spectroscopy analysis shows that the major adsorption product of sodium diethyldithiocarbamate on jamesonite is lead diethyldithiocarbamate. The intensity of the FTIR signals of metal diethyldithiocarbamate adsorption on jamesonite and the flotation response of jamesonite are correlated with the pulp potential.
基金Project supported by the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No.10811140326)the State Key Program of the National Natural Science Foundation of China(Grant No.10735090)
文摘Plasma electrolytic oxidation (PEO) coatings are prepared on aluminium with graphite powders added into the electrolyte. The scanning electron microscopy (SEM) coupled with an energy dispersive x-ray analysis system (EDX) is used to characterize the surface and the cross-section morphologies of the coatings. The electrochemical impedance spectroscopy (EIS) is used not only to evaluate the corrosion resistance but also to analyse the structure of the coating. Results show that graphite powders are embedded in the PEO coating. The corrosion resistances of both the inner barrier and the outer porous layer are greatly improved, and the EIS could give some valuable detailed information about the coating structure.