The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the...The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.展开更多
Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects f...Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.展开更多
Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,su...Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.展开更多
Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The results show that the apparent transfer coefficient of anodic process is 0.0582, diffusion coe...Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The results show that the apparent transfer coefficient of anodic process is 0.0582, diffusion coefficient of thiourea gold complex is 6.04×10~ -6 cm^2/s,anodic reaction order of thiourea is 2.0183, and anodic reaction order of OH^- is 0.0166. The theoretical kinetics equation of gold dissolving in alkaline thiourea solution is deduced, which indicates that anodic reaction order of thiourea is 2, and anodic reaction order of OH^- is 0. The theoretical values of the kinetic parameters are consistent with experimental values very well. The correctness of the mechanism is further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.展开更多
The effects of the partial replacement of Co with Mo on the phase structure and electrochemical kinetic properties of La0.35Ce0.65Ni3.54Co0.80-xMn0.35Al0.32Mox (x=0.00, 0.10, 0.15, 0.20, 0.25) hydrogen storage alloy...The effects of the partial replacement of Co with Mo on the phase structure and electrochemical kinetic properties of La0.35Ce0.65Ni3.54Co0.80-xMn0.35Al0.32Mox (x=0.00, 0.10, 0.15, 0.20, 0.25) hydrogen storage alloys prepared by arc-melting method were sys-tematically studied in this paper. The X-ray diffraction (XRD) showed that after partial substitution of Mo for Co, the alloys remained a single LaNi5 phase with a hexagonal CaCu5-type structure. The P-C isotherms indicated that the equilibrium pressure gradually decreased with in-creasing of Mo content. Electrochemical studies showed that the substitution of Mo for Co could greatly increase discharge capacity, improve activation ability and reduce self-discharge of alloy electrodes. The alloy with x=0.25 exhibited a higher rate dischargeability (HRD1200= 50.9%). Moreover, Mo is a vital element in favor of kinetic properties of AB5-type hydrogen storage alloys. As Mo content increased, the ex-change current density I0, the hydrogen diffusion rate gradually increased.展开更多
Yttrium (Y) has been used as the partial substitution element for lanthanum (La) to improve the electrochemical kinetic performances of La-Mg-Ni-based hydrogen storage alloys. Lao.80-xYxMg0.20Ni2.85Mn0.10Coo.55Al0...Yttrium (Y) has been used as the partial substitution element for lanthanum (La) to improve the electrochemical kinetic performances of La-Mg-Ni-based hydrogen storage alloys. Lao.80-xYxMg0.20Ni2.85Mn0.10Coo.55Al0.10 (x=0.00, 0.05 and 0.10) alloys were prepared by the inductive melting technique. The alloys were composed of LaNi5 and (La,Mg)2Ni7 phases, the introduction of Y promoted the formation of (La,Mg)2Ni7 phase, and thus the Y-substituted alloy electrodes exhibited higher discharge capacities. Y substitution was also found to be effective to improve the discharge kinetics of the alloy electrodes. When the Y content x increased from 0.00 to 0.10, the high-rate dischargeability of the alloy electrodes at a discharge current density of 1800 mA/g (HRDl800) in- creased from 23.6% to 39.7% at room temperature. In addition, the measured HRD1800 showed a linear dependence on both the ex- change current density and the hydrogen diffusion coefficient at different temperatures, respectively.展开更多
Derivative-extremum analysis(DEA) of j-E curves is a newly proposed method of half wave potential(E1/2) and activation feature extraction from steady-state voltammetry. Here, the DEA is demonstrated to be valid in the...Derivative-extremum analysis(DEA) of j-E curves is a newly proposed method of half wave potential(E1/2) and activation feature extraction from steady-state voltammetry. Here, the DEA is demonstrated to be valid in the full range of reversibility using numerical simulations with a derived universal electrode equation, providing a novel perspective of electrochemical kinetics in the reversibility domain. The results reveal that E1/2is a better choice of the reference potential instead of equilibrium potential(Eeq) in electrode equations, especially since Eeqis meaningless in an irreversible case. The equations referenced with standard potential, E1/2and Eeq, are summarized in three tables, and their applications in parameter determinations are specified. Finally, reversibility is proved to be a relative measure between kinetic slowness and mass transport of electroactive species, and the reversibility classifications are proposed according to the DEA feature in the reversibility domain. This work, based on the DEA principle, refines the electrode equation forms and generalizes their applicability in the full range of reversibility.展开更多
New insight into the effect on the alkali cations of Liþ,Naþ,and Kþpre-intercalated between adjacent layers of Mn3(PO4)2$3H2O towards the charge storage mechanism and their electrochemical kinetics of i...New insight into the effect on the alkali cations of Liþ,Naþ,and Kþpre-intercalated between adjacent layers of Mn3(PO4)2$3H2O towards the charge storage mechanism and their electrochemical kinetics of intercalation/deintercalation in three alkali electrolytes is demonstrated.The electrochemical perfor-mance of the designed LieMn3(PO4)2$3H2O material outperforms that most of Mn-based pseudocapa-citive electrode materials.The designed unique stratified structure is attractive for quick charge migration,which confirms that the appropriate pre-intercalation of alkali cation between layers is an efficient strategy to improve kinetics for the high-power density pseudocapacitive supercapacitor energy storage application.展开更多
Present-day Liþstorage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability.Herein,based on a Ca2þsubstituted Mg_(2)Nb_(34)O_(87) anod...Present-day Liþstorage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability.Herein,based on a Ca2þsubstituted Mg_(2)Nb_(34)O_(87) anode material,we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability.The resulting Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) shows the smallest ionic packing factor among Wadsley–Roth niobate materials.Compared with Mg_(2)Nb_(34)O_(87),Mg1.5Ca0.5Nb_(34)O_(87) delivers a 1.6 times faster Liþdiffusivity at-20℃,leading to 56%larger reversible capacity and 1.5 times higher rate capability.Furthermore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) exhibits an 11%smaller maximum unit-cell volume expansion upon lithiation at 60℃,resulting in better cyclic stability;at 10C after 500 cycles,it has a 7.1%higher capacity retention,and its reversible capacity at 10C is 57%larger.Therefore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) is an allclimate anode material capable of working at harsh temperatures,even when its particle sizes are in the order of micrometers.展开更多
A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electror...A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electroreduction of ferricyanide.A long-optical-path electro- chemical cell with a plug-in electrode is used.The thickness of solution layer is 0.55 mm展开更多
The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that...The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.展开更多
The PrMg12-type composite alloy of PrMg_(11)Ni + x wt% Ni (x=100,200) with an amorphous and nanocrystalline microstructure were synthesized through the mechanical milling.Effects of milling duration and Ni content on ...The PrMg12-type composite alloy of PrMg_(11)Ni + x wt% Ni (x=100,200) with an amorphous and nanocrystalline microstructure were synthesized through the mechanical milling.Effects of milling duration and Ni content on the microstructures and electrochemical hydrogen storage performances of the ball-milled alloys were methodically studied.The ball-milled alloys obtain the optimum discharge capacities at the first cycle.Increasing Ni content dramatically enhances the electrochemical property of alloys.Milling time varying may obviously impact the electrochemical performance of these alloys.The discharge capacities show a significant upward trend with milling duration prolonging,but milling for a longer time more than 40 h induces a slight decrease in the discharge capacity of the x=200 alloy.As milling duration increases,the cycle stability clearly lowers,while it first declines and then augments under the same condition for the x=200 alloy.The high-rate discharge abilities of the ball-milled alloys show the optimum values with milling time varying.展开更多
A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys. The effect of AB5 alloy addition on the phase structure, charge/disc...A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys. The effect of AB5 alloy addition on the phase structure, charge/discharge characteristics, and electrochemical kinetics of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy was investigated. The maximum discharge capacity of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 electrode reaches 406 mAh/g. The anodic polarization, cyclic voltammetry, and potential step discharge experiments show that the electrochemical kinetics of the electrode with additives was promoted, with the LaNi5 phase of AB5 alloy acting as electro-catalytic sites in the electrode alloy. The high-rate dischargeability of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 alloy electrode at 1100 mA/g reaches 60.9%, which is 9.4% higher than that of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy electrode. The cycling stability of the electrode with 4 wt.% AB5 alloy has also been improved展开更多
Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced elect...Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.展开更多
Electrochemical corrosion of AZ31 magnesium alloy in the NH_(4)^(+)-SO_(4)2−-Cl−environment is studied.Effect of NH_(4)^(+)overshadows that of Cl−as the(NH_(4))_(2)SO_(4) concentration is 0.005 M or higher,yielding an...Electrochemical corrosion of AZ31 magnesium alloy in the NH_(4)^(+)-SO_(4)2−-Cl−environment is studied.Effect of NH_(4)^(+)overshadows that of Cl−as the(NH_(4))_(2)SO_(4) concentration is 0.005 M or higher,yielding an evolution from localized corrosion to uniform corrosion.Acceleration effect of NH_(4)^(+)can be attributed to that(i)NH_(4)^(+)dissolves the inner MgO and hinders the precipitation of Mg(OH)_(2) and(ii)the buffering ability of NH_(4)^(+)provides H+,enhances the hydrogen evolution,and expedites the corrosion process.The latter is demonstrated as the dominant factor with the results in unbuffered and buffered environments.The severe corrosion and hydrogen process in NH_(4)^(+)-containing solution results in a high Hads coverage and yields an inductive loop within the low frequency.Meanwhile,SO_(4)^(2−)is helpful in generating cracked but partially protective corrosion products,while Cl−could broaden the corrosion area beneath the corrosion product.展开更多
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi...Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.展开更多
Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface ...Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.展开更多
Vanadium redox flow battery(VRFB)is one of the most promising large-scale energy storage systems,which ranges from kilowatt to megawatt.Nevertheless,poor electrochemical activity of electrode for two redox couples sti...Vanadium redox flow battery(VRFB)is one of the most promising large-scale energy storage systems,which ranges from kilowatt to megawatt.Nevertheless,poor electrochemical activity of electrode for two redox couples still restricts the extensive applications of VRFB.Compared with V^(2+)/V^(3+)redox reaction,V^(2+)/V^(3+)reaction plays a more significant role in voltage loss of VRFB owing to slow heterogeneous electron transfer rate.Herein,N-doped carbon materials derived from scaphium scaphigerum have been developed as negative electrocatalyst by hydrothermal carbonization and high-temperature nitridation treatments.The undoped carbon material hardly has electrocatalytic ability for V^(2+)/V^(3+)reaction.Based on this,N-doped carbon materials with urea as nitrogen source exhibit excellent electrocatalytic properties.And the material nitrided at 850°C(SSC/N-850)exhibits the best performance among those from700 to 1000℃.SSC/N-850 can accelerate the electrode process including V^(2+)/V^(3+)reaction and mass transfer of active ions due to the large reaction place,more active sites,and good hydrophilicity.The effect of catalyst on comprehensive performance of cell was evaluated.SSC/N-850 can improve the charge-discharge performance greatly.Utilization of SSC/N-850 can lessen the electrochemical polarization of cell,further resulting in increased discharge capacity and energy efficiency.Discharge capacity and energy efficiency increase by 81.5%and 9.8%by using SSC/N-850 as negative catalyst at 150 m A cm^(-2),respectively.Our study reveals that the developed biomass-derived carbon materials are the low-cost and efficient negative electrocatalyst for VRFB system.展开更多
The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium...The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs.展开更多
The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogene...The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogeneous electrocatalytic reaction between hydroxymethylferrocene(HMF)and L-cysteine is intensively investigated by cyclic voltammetry and square wave voltammetry for which,the secondorder rate constant(k_(ec))of the chemical reaction between HMF^(+)and L-cysteine is determined via a 1D homogeneous electrocatalytic reaction model based on finite element simulation.The corresponding k_(ec)(1.1(mol·m^(-3))^(-1)·s^(-1))is further verified by linear sweep voltammograms under the same model.Square wave voltammetry parameters including potential frequency(f),increment(Estep)and amplitude(ESW)have been comprehensively investigated in terms of the voltammetric waveform transition of homogeneous electrocatalytic reaction.Specifically,the effect of potential frequency and increment is in accordance with the potential scan rate in cyclic voltammetry and the increase of pulsed potential amplitude results in a conspicuous split oxidative peaks phenomenon.Moreover,the proposed methodology of k_(ec)prediction is examined by hydroxyethylferrocene(HEF)and L-cysteine.The present work facilitates the understanding of homogeneous electrocatalytic reaction for energy storage purpose,especially in terms of electrochemical kinetics extraction and flow battery design.展开更多
基金China Scholarship Council,Grant/Award Number:201806950083Advanced Materials research program of the Zernike National Research CentreFaculty of Science and Engineering(FSE),University of Groningen。
文摘The development of lithium-sulfur(Li-S)batteries is hindered by the disadvantages of shuttling of polysulfides and the sluggish redox kinetics of the conversion of sulfur species during discharge and charge.Herein,the crystallinities of a titanium nitride(TiN)film on copper-embedded carbon nanofibers(Cu-CNFs)are regulated and the nanofibers are used as interlayers to resolve the aforementioned crucial issues.A low-crystalline TiN-coated Cu-CNF(L-TiN-Cu-CNF)interlayer is compared with its highly crystalline counterpart(H-TiN-Cu-CNFs).It is demonstrated that the L-TiN coating not only strengthens the chemical adsorption toward polysulfides but also greatly accelerates the electrochemical conversion of polysulfides.Due to robust carbon frameworks and enhanced kinetics,impressive highrate performance at 2 C(913 mAh g^(-1)based on sulfur)as well as remarkable cyclic stability up to 300 cycles(626 mAh g^(-1))with capacity retention of 46.5%is realized for L-TiN-Cu-CNF interlayer-configured Li-S batteries.Even under high loading(3.8 mg cm^(-2))of sulfur and relatively lean electrolyte(10μL electrolyte per milligram sulfur)conditions,the Li-S battery equipped with L-TiN-Cu-CNF interlayers delivers a high capacity of 1144 mAh g^(-1)with cathodic capacity of 4.25 mAh cm^(-2)at 0.1 C,providing a potential pathway toward the design of multifunctional interlayers for highly efficient Li-S batteries.
基金supported by the National Natural Science Foundation of China (21573083)1000 Young Talent (to Deli Wang)the Innovation Research Funds of HuaZhong University of Science and Technology (2017KFYXJJ164)。
文摘Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.
基金fellowship funding supported by the Alexander von Humboldt Foundationfinancial funding support from the Natural Science Foundation of Jiangsu Province(BK.20210636)Natural Science Foundation of China(21773294 and 21972164)。
文摘Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.
基金Project(50004009) supported by the National Natural Science Foundation of China
文摘Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The results show that the apparent transfer coefficient of anodic process is 0.0582, diffusion coefficient of thiourea gold complex is 6.04×10~ -6 cm^2/s,anodic reaction order of thiourea is 2.0183, and anodic reaction order of OH^- is 0.0166. The theoretical kinetics equation of gold dissolving in alkaline thiourea solution is deduced, which indicates that anodic reaction order of thiourea is 2, and anodic reaction order of OH^- is 0. The theoretical values of the kinetic parameters are consistent with experimental values very well. The correctness of the mechanism is further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.
基金supported by the National Natural Science Foundation of China (20673093)
文摘The effects of the partial replacement of Co with Mo on the phase structure and electrochemical kinetic properties of La0.35Ce0.65Ni3.54Co0.80-xMn0.35Al0.32Mox (x=0.00, 0.10, 0.15, 0.20, 0.25) hydrogen storage alloys prepared by arc-melting method were sys-tematically studied in this paper. The X-ray diffraction (XRD) showed that after partial substitution of Mo for Co, the alloys remained a single LaNi5 phase with a hexagonal CaCu5-type structure. The P-C isotherms indicated that the equilibrium pressure gradually decreased with in-creasing of Mo content. Electrochemical studies showed that the substitution of Mo for Co could greatly increase discharge capacity, improve activation ability and reduce self-discharge of alloy electrodes. The alloy with x=0.25 exhibited a higher rate dischargeability (HRD1200= 50.9%). Moreover, Mo is a vital element in favor of kinetic properties of AB5-type hydrogen storage alloys. As Mo content increased, the ex-change current density I0, the hydrogen diffusion rate gradually increased.
基金Project supported by the National Natural Science Foundation of China(51171165,21303157)the Natural Science Foundation of Hebei Province(B2012203027,B2012203104 and B2014203114)
文摘Yttrium (Y) has been used as the partial substitution element for lanthanum (La) to improve the electrochemical kinetic performances of La-Mg-Ni-based hydrogen storage alloys. Lao.80-xYxMg0.20Ni2.85Mn0.10Coo.55Al0.10 (x=0.00, 0.05 and 0.10) alloys were prepared by the inductive melting technique. The alloys were composed of LaNi5 and (La,Mg)2Ni7 phases, the introduction of Y promoted the formation of (La,Mg)2Ni7 phase, and thus the Y-substituted alloy electrodes exhibited higher discharge capacities. Y substitution was also found to be effective to improve the discharge kinetics of the alloy electrodes. When the Y content x increased from 0.00 to 0.10, the high-rate dischargeability of the alloy electrodes at a discharge current density of 1800 mA/g (HRDl800) in- creased from 23.6% to 39.7% at room temperature. In addition, the measured HRD1800 showed a linear dependence on both the ex- change current density and the hydrogen diffusion coefficient at different temperatures, respectively.
基金financially supported by the National Natural Science Foundation of China (Nos. 52131003, 52170059, 51808526, 51727812)。
文摘Derivative-extremum analysis(DEA) of j-E curves is a newly proposed method of half wave potential(E1/2) and activation feature extraction from steady-state voltammetry. Here, the DEA is demonstrated to be valid in the full range of reversibility using numerical simulations with a derived universal electrode equation, providing a novel perspective of electrochemical kinetics in the reversibility domain. The results reveal that E1/2is a better choice of the reference potential instead of equilibrium potential(Eeq) in electrode equations, especially since Eeqis meaningless in an irreversible case. The equations referenced with standard potential, E1/2and Eeq, are summarized in three tables, and their applications in parameter determinations are specified. Finally, reversibility is proved to be a relative measure between kinetic slowness and mass transport of electroactive species, and the reversibility classifications are proposed according to the DEA feature in the reversibility domain. This work, based on the DEA principle, refines the electrode equation forms and generalizes their applicability in the full range of reversibility.
基金This research work was supported by the Sichuan Science and Technology Project(No.2020YJ0163)the Research Foundation for Teacher Development of Chengdu University of Technology(No.10912-2019KYQD-06847).
文摘New insight into the effect on the alkali cations of Liþ,Naþ,and Kþpre-intercalated between adjacent layers of Mn3(PO4)2$3H2O towards the charge storage mechanism and their electrochemical kinetics of intercalation/deintercalation in three alkali electrolytes is demonstrated.The electrochemical perfor-mance of the designed LieMn3(PO4)2$3H2O material outperforms that most of Mn-based pseudocapa-citive electrode materials.The designed unique stratified structure is attractive for quick charge migration,which confirms that the appropriate pre-intercalation of alkali cation between layers is an efficient strategy to improve kinetics for the high-power density pseudocapacitive supercapacitor energy storage application.
基金supported by the National Natural Science Foundation of China (51762014)Key Research Project of Natural Science in Universities of Anhui Province (KJ2020A0749)Excellent Young Talents Foundation in Universities of Anhui Province (gxyq2021223).
文摘Present-day Liþstorage materials generally suffer from sluggish low-temperature electrochemical kinetics and poor high-temperature cycling stability.Herein,based on a Ca2þsubstituted Mg_(2)Nb_(34)O_(87) anode material,we demonstrate that decreasing the ionic packing factor is a two-fold strategy to enhance the low-temperature electrochemical kinetics and high-temperature cyclic stability.The resulting Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) shows the smallest ionic packing factor among Wadsley–Roth niobate materials.Compared with Mg_(2)Nb_(34)O_(87),Mg1.5Ca0.5Nb_(34)O_(87) delivers a 1.6 times faster Liþdiffusivity at-20℃,leading to 56%larger reversible capacity and 1.5 times higher rate capability.Furthermore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) exhibits an 11%smaller maximum unit-cell volume expansion upon lithiation at 60℃,resulting in better cyclic stability;at 10C after 500 cycles,it has a 7.1%higher capacity retention,and its reversible capacity at 10C is 57%larger.Therefore,Mg_(1.5)Ca_(0.5)Nb_(34)O_(87) is an allclimate anode material capable of working at harsh temperatures,even when its particle sizes are in the order of micrometers.
文摘A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electroreduction of ferricyanide.A long-optical-path electro- chemical cell with a plug-in electrode is used.The thickness of solution layer is 0.55 mm
基金Projects(51761032,51471054)supported by the National Natural Science Foundation of ChinaProject(2015MS0558)supported by the Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.
基金Funded by National Natural Science Foundation of China(Nos.51871125,51901105 and 51761032)Inner Mongolia Natural Science Foundation(No.2019BS05005)。
文摘The PrMg12-type composite alloy of PrMg_(11)Ni + x wt% Ni (x=100,200) with an amorphous and nanocrystalline microstructure were synthesized through the mechanical milling.Effects of milling duration and Ni content on the microstructures and electrochemical hydrogen storage performances of the ball-milled alloys were methodically studied.The ball-milled alloys obtain the optimum discharge capacities at the first cycle.Increasing Ni content dramatically enhances the electrochemical property of alloys.Milling time varying may obviously impact the electrochemical performance of these alloys.The discharge capacities show a significant upward trend with milling duration prolonging,but milling for a longer time more than 40 h induces a slight decrease in the discharge capacity of the x=200 alloy.As milling duration increases,the cycle stability clearly lowers,while it first declines and then augments under the same condition for the x=200 alloy.The high-rate discharge abilities of the ball-milled alloys show the optimum values with milling time varying.
基金the National Natu-ral Science Foundation of China (No. 20673093)the Natu-ral Science Foundation of Hebei Province (No. B2007000303)the Support Program for Hundred Ex-cellent Innovation Talents from the Universities and Col-leges of Hebei Province, China
文摘A commercial AB5 hydrogen storage alloy was used as an additive to improve the electrochemical properties of Ml-Mg-Ni-based hydrogen storage alloys. The effect of AB5 alloy addition on the phase structure, charge/discharge characteristics, and electrochemical kinetics of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy was investigated. The maximum discharge capacity of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 electrode reaches 406 mAh/g. The anodic polarization, cyclic voltammetry, and potential step discharge experiments show that the electrochemical kinetics of the electrode with additives was promoted, with the LaNi5 phase of AB5 alloy acting as electro-catalytic sites in the electrode alloy. The high-rate dischargeability of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 + 4 wt.% AB5 alloy electrode at 1100 mA/g reaches 60.9%, which is 9.4% higher than that of Ml0.90Mg0.10Ni3.08Mn0.13Co0.63Al0.14 alloy electrode. The cycling stability of the electrode with 4 wt.% AB5 alloy has also been improved
基金Project(NCET-10-0946)supported by Program for New Century Excellent Talents in University of ChinaProject(2017JY0038)supported by Science and Technology Key Project of Sichuan Province,ChinaProject(2013TX8)supported by Titanium and Titanium Alloy Innovation Team of Panzhihua City,China
文摘Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.
基金support of National Natural Science Foundation of China(No.U2106216)the National Science and Technology Resources Investigation Program of China(No.2019FY101400)the Youth Innovation Plan of Shandong Province(2019KJD001).
文摘Electrochemical corrosion of AZ31 magnesium alloy in the NH_(4)^(+)-SO_(4)2−-Cl−environment is studied.Effect of NH_(4)^(+)overshadows that of Cl−as the(NH_(4))_(2)SO_(4) concentration is 0.005 M or higher,yielding an evolution from localized corrosion to uniform corrosion.Acceleration effect of NH_(4)^(+)can be attributed to that(i)NH_(4)^(+)dissolves the inner MgO and hinders the precipitation of Mg(OH)_(2) and(ii)the buffering ability of NH_(4)^(+)provides H+,enhances the hydrogen evolution,and expedites the corrosion process.The latter is demonstrated as the dominant factor with the results in unbuffered and buffered environments.The severe corrosion and hydrogen process in NH_(4)^(+)-containing solution results in a high Hads coverage and yields an inductive loop within the low frequency.Meanwhile,SO_(4)^(2−)is helpful in generating cracked but partially protective corrosion products,while Cl−could broaden the corrosion area beneath the corrosion product.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,Grant Nos.22fksy23 and 18ZD320304)+3 种基金the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,Grand No.2022ZY017)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)Interdiscipline Team Project under auspices of“Light of West”Program in Chinese Academy of Sciences(Grant No.xbzg-zdsys-202106).
文摘Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.
基金supported by the National Natural Science Foundation of China(No.51972023)。
文摘Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.
基金financially supported by the National Natural Science Foundation of China(No.51772097)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)Training Program of Innovation and Entrepreneurship for Undergraduates(No.X2018156,North China University of Science and Technology)。
文摘Vanadium redox flow battery(VRFB)is one of the most promising large-scale energy storage systems,which ranges from kilowatt to megawatt.Nevertheless,poor electrochemical activity of electrode for two redox couples still restricts the extensive applications of VRFB.Compared with V^(2+)/V^(3+)redox reaction,V^(2+)/V^(3+)reaction plays a more significant role in voltage loss of VRFB owing to slow heterogeneous electron transfer rate.Herein,N-doped carbon materials derived from scaphium scaphigerum have been developed as negative electrocatalyst by hydrothermal carbonization and high-temperature nitridation treatments.The undoped carbon material hardly has electrocatalytic ability for V^(2+)/V^(3+)reaction.Based on this,N-doped carbon materials with urea as nitrogen source exhibit excellent electrocatalytic properties.And the material nitrided at 850°C(SSC/N-850)exhibits the best performance among those from700 to 1000℃.SSC/N-850 can accelerate the electrode process including V^(2+)/V^(3+)reaction and mass transfer of active ions due to the large reaction place,more active sites,and good hydrophilicity.The effect of catalyst on comprehensive performance of cell was evaluated.SSC/N-850 can improve the charge-discharge performance greatly.Utilization of SSC/N-850 can lessen the electrochemical polarization of cell,further resulting in increased discharge capacity and energy efficiency.Discharge capacity and energy efficiency increase by 81.5%and 9.8%by using SSC/N-850 as negative catalyst at 150 m A cm^(-2),respectively.Our study reveals that the developed biomass-derived carbon materials are the low-cost and efficient negative electrocatalyst for VRFB system.
基金National Nature Science Foundation of China,Grant/Award Number:21908124。
文摘The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs.
基金the support of National Natural Science Foundation of China, China (Grant No. 22005010)Beijing Municipal Education Commission Research Project (KM202010005012)
文摘The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogeneous electrocatalytic reaction between hydroxymethylferrocene(HMF)and L-cysteine is intensively investigated by cyclic voltammetry and square wave voltammetry for which,the secondorder rate constant(k_(ec))of the chemical reaction between HMF^(+)and L-cysteine is determined via a 1D homogeneous electrocatalytic reaction model based on finite element simulation.The corresponding k_(ec)(1.1(mol·m^(-3))^(-1)·s^(-1))is further verified by linear sweep voltammograms under the same model.Square wave voltammetry parameters including potential frequency(f),increment(Estep)and amplitude(ESW)have been comprehensively investigated in terms of the voltammetric waveform transition of homogeneous electrocatalytic reaction.Specifically,the effect of potential frequency and increment is in accordance with the potential scan rate in cyclic voltammetry and the increase of pulsed potential amplitude results in a conspicuous split oxidative peaks phenomenon.Moreover,the proposed methodology of k_(ec)prediction is examined by hydroxyethylferrocene(HEF)and L-cysteine.The present work facilitates the understanding of homogeneous electrocatalytic reaction for energy storage purpose,especially in terms of electrochemical kinetics extraction and flow battery design.