The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric a...The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric acid(HEDP),and tribasic ammonium citrate(TAC)were investigated by electrochemical techniques,X-ray photoelectron spectrometer(XPS)analysis,nano-scratch tests,AFM measurements,and polishing of Cu-coated blanket wafers.The experimental results show that the planarization efficiency and the surface quality after ECMP obtained in alkali-based solutions are superior to that in acidic-based solutions,especially at pH=8.The optimal electrolyte compositions(mass fraction)are 6% HEDP,0.3% TTA and 3% TAC at pH=8.The main factor affecting the thickness of the oxide layer formed during ECMP process is the applied potential.The soft layer formation is a major mechanism for electrochemical enhanced mechanical abrasion.The surface topography evolution before and after electrochemical polishing(ECP)illustrates the mechanism of mechanical abrasion accelerating electrochemical dissolution,that is,the residual stress caused by the mechanical wear enhances the electrochemical dissolution rate.This understanding is beneficial for optimization of ECMP processes.展开更多
Electrochemical mechanical polishing(ECMP)is a new and highly promising technology.A specific challenge for integrating Ru as barrier in Cu interconnect structures is the galvanic corrosion of Cu that occurs during EC...Electrochemical mechanical polishing(ECMP)is a new and highly promising technology.A specific challenge for integrating Ru as barrier in Cu interconnect structures is the galvanic corrosion of Cu that occurs during ECMP.To mitigate the problem,the benzotriazole(BTA)and ascorbic acid(AA)were chosen as selective anodic and cathodic inhibitors for Cu and Ru,respectively.The optimization of electrolytes at different pHs including BTA,hydroxyethylidenediphosphoric acid(HEDP),and AA were investigated using electrochemical methods.The Ru/Cu removal rate and the planarization efficiency during Ru/Cu ECMP can be approximated using electrochemical measurements of the removal rate,with and without surface abrasion.Chemical systems that exhibit a 1:1 selectivity between the barrier layer and copper would be ideal for the barrier removal step of ECMP.Optimized slurry consists of 20.0 wt%HEDP,0.5 wt%BTA,and 0.3 wt%AA at pH 2.2.Using the optimized slurry,the selectivity of Ru to Cu is near 1.Electrochemical measurements of open circuit potentials,potentiodynamic polarization,and impedance spectroscopy were performed to investigate the galvanic corrosion between ruthenium and copper.展开更多
基金Project(50975058)supported by the National Science Foundation of China
文摘The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric acid(HEDP),and tribasic ammonium citrate(TAC)were investigated by electrochemical techniques,X-ray photoelectron spectrometer(XPS)analysis,nano-scratch tests,AFM measurements,and polishing of Cu-coated blanket wafers.The experimental results show that the planarization efficiency and the surface quality after ECMP obtained in alkali-based solutions are superior to that in acidic-based solutions,especially at pH=8.The optimal electrolyte compositions(mass fraction)are 6% HEDP,0.3% TTA and 3% TAC at pH=8.The main factor affecting the thickness of the oxide layer formed during ECMP process is the applied potential.The soft layer formation is a major mechanism for electrochemical enhanced mechanical abrasion.The surface topography evolution before and after electrochemical polishing(ECP)illustrates the mechanism of mechanical abrasion accelerating electrochemical dissolution,that is,the residual stress caused by the mechanical wear enhances the electrochemical dissolution rate.This understanding is beneficial for optimization of ECMP processes.
基金the National Natural Science Foundation of China(No.50975058)。
文摘Electrochemical mechanical polishing(ECMP)is a new and highly promising technology.A specific challenge for integrating Ru as barrier in Cu interconnect structures is the galvanic corrosion of Cu that occurs during ECMP.To mitigate the problem,the benzotriazole(BTA)and ascorbic acid(AA)were chosen as selective anodic and cathodic inhibitors for Cu and Ru,respectively.The optimization of electrolytes at different pHs including BTA,hydroxyethylidenediphosphoric acid(HEDP),and AA were investigated using electrochemical methods.The Ru/Cu removal rate and the planarization efficiency during Ru/Cu ECMP can be approximated using electrochemical measurements of the removal rate,with and without surface abrasion.Chemical systems that exhibit a 1:1 selectivity between the barrier layer and copper would be ideal for the barrier removal step of ECMP.Optimized slurry consists of 20.0 wt%HEDP,0.5 wt%BTA,and 0.3 wt%AA at pH 2.2.Using the optimized slurry,the selectivity of Ru to Cu is near 1.Electrochemical measurements of open circuit potentials,potentiodynamic polarization,and impedance spectroscopy were performed to investigate the galvanic corrosion between ruthenium and copper.