Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is cr...Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly.展开更多
Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en...Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microsco...The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.展开更多
In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type ...In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.展开更多
Nano-scale Ni(OH)2 doped with Zn was prepared by precipitation transformation method and characterized by XRD and TEM. The electrochemical performance was investigated by cyclic voltammetry (CV) and constant curre...Nano-scale Ni(OH)2 doped with Zn was prepared by precipitation transformation method and characterized by XRD and TEM. The electrochemical performance was investigated by cyclic voltammetry (CV) and constant current technology. The measurement results indicate that the lattice parameters of nano-scale Ni(OH)2 are changed and the agglomeration of particles becomes obvious with the increased Zn-doped content. Compared with un-doped one, the discharge specific capacities ofnano-scale Ni(OH)2 doped with 10% Zn are enhanced by 8% and 6%, respectively, at the discharge rate of 0.2C and 3C. After 110 cycles, the discharge specific capacity of the sample doped with 10% zinc is still above 85% of its initial capacity discharged at 0.2C. Therefore, a suitable Zn-doped content is beneficial to improving the discharge performance of nano-scale Ni(OH)2.展开更多
Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint...Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.展开更多
Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and d...Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.展开更多
Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared...Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared samples were examined by X-ray diffraction (XRD) and laser particle size analyzer, respectively. The results show that Sample B has more crystalline defects and smaller average diameter than Sample A. The cyclic voltammetry and electrochemical impedance spectroscopy measurements indicate that Sample B has better electrochemical performance than Sample A, such as better reaction reversibility, lower charge-transfer resistance and better cyclic stability. Proton diffusion coefficient of Sample B is 1.96×10-10cm2/s, which is two times as large as that (9.78×10-11cm2/s) of Sample A. The charge-discharge tests show that the discharge capacity (308 mA·h/g) of Sample B is 25 mA·h/g higher than that of Sample A (283 mA·h/g).展开更多
Nanometer Cu singly doped and Cu/Al co-doped nickel hydroxides were synthesized by ultrasonic-assisted precipitation method. Their crystal structure, particle size, morphology, tap density and electrochemical performa...Nanometer Cu singly doped and Cu/Al co-doped nickel hydroxides were synthesized by ultrasonic-assisted precipitation method. Their crystal structure, particle size, morphology, tap density and electrochemical performance were investigated. The results show that the samples have a-phase structure with narrow particle size distribution. Cu singly doped nano-Ni(OH)2 contains irregular particles, while Cu/Al co-doped nano-Ni(OH)2 displays a quasi-spherical shape and has a relatively higher tap density. Composite electrodes were prepared by mixing 8% (mass fraction) nanometer samples with commercial micro-size spherical nickel. The charge/discharge test and cyclic voltammetry results indicate that the electrochemical performance of Cu/Al co-doped nano-Ni(OH)2 is better than that of Cu singly doped nano-Ni(OH)2, the former's discharge capacity reaches 330 mA.h/g at 0.2C, 12 mA.h/g and 91 mA.h/g larger than that of Cu singly doped sample and pure spherical nickel electrode, respectively. Moreover, the proton diffusion coefficient of Cu/Al co-doped sample is 52.3% larger than that of Cu singly doped sample.展开更多
As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for catho...As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.展开更多
Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy ele...Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy electrodes were studied.The constant charge-discharge tests show that the discharge capacity of alloy electrodes with Co3O4 significantly increases,and the maximum discharge capacities of electrodes with 2%,4%,6% and 8% Co3O4 are higher than the electrode with no Co3O4 by 0.83%,4.86%,7.18% and 9.21%,accordingly.Linear polarization(LP) and electrochemical impedance spectroscopy(EIS) tests suggest that charge-transfer resistance decreases by the addition of Co3O4.Cyclic voltammogram(CV),scanning electron microscopy(SEM) and energy dispersive spectrum(EDS) tests indicate that Co3O4 can partly dissolve and experience a reversible oxidation-reduction process of Co to Co(OH)2,leading to the improvement in the electrochemical performance of hydrogen storage alloy.展开更多
The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of th...The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting...展开更多
The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composit...The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon, which is characterized as high specific surface area and microporous structure. The composite, contained 70% sulfur, as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature. It showed two reduction peaks at 2.05 V and 2.35 V, one oxidation peak at 2.4 V during cyclic voltammogram test. The initial discharge specific capacity was 1180.8 mAh g-1 and the utilization of electrochemically active sulfur was about 70.6% assuming a complete reaction to the product of Li2S. The specific capacity still kept as high as 720.4 mAh g^-1 after 60 cycles retaining 61% of the initial discharge capacity.展开更多
The La-Mg-Ni-based A2B7-type Lao.8_xNdx Mgo.2Ni3.35Alo.lSio.o5 (x = 0, 0.1, 0.2, 0.3, and 0.4) electrode alloys were prepared by casting and annealing. The influence of the partial substitution of Nd for La on the s...The La-Mg-Ni-based A2B7-type Lao.8_xNdx Mgo.2Ni3.35Alo.lSio.o5 (x = 0, 0.1, 0.2, 0.3, and 0.4) electrode alloys were prepared by casting and annealing. The influence of the partial substitution of Nd for La on the structure and electrochemical performances of the alloys was investigated. The structural analysis of X-ray diffraction and scanning electron microscopy reveals that the experimental alloys consist of two major phases: (La,Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCus-type structure as well as some residual phases of LaNi3 and NdNis. The electrochemical measurements indicate that an evident change of the electrochemical performance of the alloys is associated with the substitution of Nd for La. The discharge capacity of the alloy first increases then decreases with the growing Nd content, whereas their cycle stability clearly grows all the time. Furthermore, the measurements of the high rate discharge ability, the limiting current density, and hydrogen diffusion coefficient all demonstrate that the electrochemical kinetic properties of the alloy electrodes first augment then decline with the rising amount of Nd substitution.展开更多
Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no ...Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess...In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess body-centered cubic (BCC) phase in nano-crystalline. Electrochemical experiments show that Mg45Zr5Co50 electrode exhibits the highest capacity (425 mA·h/g) among the Mg45M5Co50 (M=Mg, Pd, Zr) alloys. And Mg45Pd5Co50 electrode lifts not only the initial discharge capacity (379 mA·h/g), but also the discharge kinetics, e.g., exchange current density and hydrogen diffusion ability from that of Mg50Co50. It could be concluded that the electrochemical performances were enhanced by substituting Zr and Pd for Mg in Mg-Co-based alloy.展开更多
LiNiCoAlO(NCA) with Zr(OH)coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)po...LiNiCoAlO(NCA) with Zr(OH)coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)powders, and then characterized with scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). Experimental results show that amorphous Zr(OH)powders have been successfully coated on the surface of spherical NCA particles, exhibiting improved electrochemical performance. 0.50 wt% Zr(OH)coated NCA delivers a capacity of 197.6 mAh/g at the first cycle and 154.3 mAh/g after 100 cycles with a capacity retention of 78.1% at 1 C rate. In comparison, the pure NCA shows a capacity of 194.6 mAh/g at the first cycle and 142.5 mAh/g after 100 cycles with a capacity retention of 73.2% at 1 C rate. Electrochemical impedance spectroscopy(EIS) results show that the coated material exhibits a lower resistance, indicating that the coating layer can efficiently suppress transition metals dissolution and decrease the side reactions at the surface between the electrode and electrolyte. Therefore, surface coating with amorphous Zr(OH)is a simple and useful method to enhance the electrochemical performance of NCA-based materials for the cathode of LIBs.展开更多
The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of t...The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of the as-cast and quenched alloys were determined and measured. The effects of rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The obtained results show that the alloys are composed of the (La, Mg) Ni3 phase (PuNi3-type structure) and the LaNi5 phase, as well as the small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast alloy containing boron, and the Ni2B phase in the alloy nearly disappears after rapid quenching. The relative amount of each phase in the alloys depends on the quenching rate. The rapid quenching technique can greatly improve the electrochemical performance of the alloy, and the effect of rapid quenching on the activation performances of the alloys is minor. Rapid quenching enhances the cycle stability of the alloy, and the cycle life of the alloy increases with the increase of the quenching rate.展开更多
A novel method for analysis of three active components curcumin, demethoxycurcumin and bisdemethoxycurcumin in Curcuma longa L. was developed by HPLC coupled with electrochemical detection. Three curcuminoids were wel...A novel method for analysis of three active components curcumin, demethoxycurcumin and bisdemethoxycurcumin in Curcuma longa L. was developed by HPLC coupled with electrochemical detection. Three curcuminoids were well separated on a C18 column and detected with high sensitivity. A mobile phase containing acetonitrile and 10 mM Na2HPO4-H3PO4 (pH 5.0) (50:50, v/v) was used. Good linearity was obtained in the range of 0.208-41.6, 0.197-39.4, and 0.227-114μM for curcumin, demethoxycurcumin and bisdemethoxycurcumin respectively. The limit of detection reached up to 10 ? 8 M, which was lower than that by UV detection. The relative standard deviations (RSDs) ranged from 1.06%to 1.88%for intra-day precision and from 4.30%to 5.79%for inter-day precision, respectively. The proposed method has been applied in real herb sample and recoveries ranging from 86.3%to 111%were obtained.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.52275152)。
文摘Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly.
基金supported in part by the National Natural Science Foundation of China(Nos.22075027,52003030)Starting Grant from Beijing Institute of Technology and financial support from the State Key Laboratory of Explosion Science and Technology(YBKT21-06,YKBT23-05).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
基金Project(094200510019) supported by Technology Creative Programmer of Henan for Excellent Talents,ChinaProject(092300410132) supported by the Natural Science Foundation of Henan Province,China
文摘The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.
基金Projects(51161015,51371094) supported by the National Natural Science Foundation of China
文摘In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.
基金Project(BK2008591) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2009RFQXG065) supported by Harbin Special Foundation of Technological Innovation Talent,China
文摘Nano-scale Ni(OH)2 doped with Zn was prepared by precipitation transformation method and characterized by XRD and TEM. The electrochemical performance was investigated by cyclic voltammetry (CV) and constant current technology. The measurement results indicate that the lattice parameters of nano-scale Ni(OH)2 are changed and the agglomeration of particles becomes obvious with the increased Zn-doped content. Compared with un-doped one, the discharge specific capacities ofnano-scale Ni(OH)2 doped with 10% Zn are enhanced by 8% and 6%, respectively, at the discharge rate of 0.2C and 3C. After 110 cycles, the discharge specific capacity of the sample doped with 10% zinc is still above 85% of its initial capacity discharged at 0.2C. Therefore, a suitable Zn-doped content is beneficial to improving the discharge performance of nano-scale Ni(OH)2.
基金Project (51162026) supported by the National Natural Science Foundation of ChinaProjects (20100480949, 201104509) supported by China Postdoctoral Science FoundationProject (133274341015501) supported by Postdoctoral Science Foundation of Central South University, China
文摘Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of ChinaProject(CXLX11_0359)supported by Research Innovative Projects for Average College Graduate Students of 2011 in Jiangsu Province,China+2 种基金Project(RERU2011010)supported by Open Subject of State Key Laboratory of Rare Earth Resource Utilization,ChinaProject(51201089)supported by the National Natural Science Foundation of ChinaProject(CPSF2012M521064)supported by China Postdoctoral Science Foundation
文摘Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.
基金Project (10774030) supported by the National Natural Science Foundation of ChinaProject (2008J1-C161) supported by the Science and Technology Program of Guangzhou City of China
文摘Al/Co co-doped α-Ni(OH)2 samples were prepared by either ultrasonic co-precipitation method (Sample B) or co-precipitation method (Sample A). The crystal structure and particle size distribution of the prepared samples were examined by X-ray diffraction (XRD) and laser particle size analyzer, respectively. The results show that Sample B has more crystalline defects and smaller average diameter than Sample A. The cyclic voltammetry and electrochemical impedance spectroscopy measurements indicate that Sample B has better electrochemical performance than Sample A, such as better reaction reversibility, lower charge-transfer resistance and better cyclic stability. Proton diffusion coefficient of Sample B is 1.96×10-10cm2/s, which is two times as large as that (9.78×10-11cm2/s) of Sample A. The charge-discharge tests show that the discharge capacity (308 mA·h/g) of Sample B is 25 mA·h/g higher than that of Sample A (283 mA·h/g).
基金Project (10774030) supported by the National Natural Science Foundation of ChinaProject (S2012010009955) supported by the Guangdong Province Natural Science Foundation of ChinaProject (12C232111916) supported by the Science and Technology Program of Guangzhou City of China
文摘Nanometer Cu singly doped and Cu/Al co-doped nickel hydroxides were synthesized by ultrasonic-assisted precipitation method. Their crystal structure, particle size, morphology, tap density and electrochemical performance were investigated. The results show that the samples have a-phase structure with narrow particle size distribution. Cu singly doped nano-Ni(OH)2 contains irregular particles, while Cu/Al co-doped nano-Ni(OH)2 displays a quasi-spherical shape and has a relatively higher tap density. Composite electrodes were prepared by mixing 8% (mass fraction) nanometer samples with commercial micro-size spherical nickel. The charge/discharge test and cyclic voltammetry results indicate that the electrochemical performance of Cu/Al co-doped nano-Ni(OH)2 is better than that of Cu singly doped nano-Ni(OH)2, the former's discharge capacity reaches 330 mA.h/g at 0.2C, 12 mA.h/g and 91 mA.h/g larger than that of Cu singly doped sample and pure spherical nickel electrode, respectively. Moreover, the proton diffusion coefficient of Cu/Al co-doped sample is 52.3% larger than that of Cu singly doped sample.
基金Project(2010ZCO51)supported by Natural Science Foundation of Yunnan ProvinceProject supported by Analysis and Testing Foundation(2009-041)Starting Research Fund(14118245)from Kunming University of Science and Technology
文摘As an improvement on the conventional two-layer electrode (active material layerlcurrent collector), a novel sandwich-like three-layer electrode (conductive layerlactive material layertcurrent collector) for cathode material LiFePO4/C was introduced in order to improve its electrochemical performance. LiFePO4/C in the three-layer electrode exhibited superior rate capability in comparison with that in the two-layer electrode in accordance with charge-discharge examination. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that Fe3+/Fe2+ redox couple for LiFePO4 in the three-layer electrode displayed faster kinetics, better reversibility and much lower charge transfer resistance than that in the two-layer electrode in electrochemical process. For three-layer electrode, the holes in the surface of active material layer were filled by smaller acetylene black grains, which formed electrical connections and provided more pathways to electron transport to/from LiFePO4/C particles exposed to the bulk electrolyte.
基金Projects(21071153,20976198)supported by the National Natural Science Foundation of China
文摘Anodic electrodes with the mixture of hydrogen storage alloys and different contents of Co3O4(2%,4%,6% and 8%,mass fraction) powders were made.The effects of Co3O4 on the electrochemical performance of the alloy electrodes were studied.The constant charge-discharge tests show that the discharge capacity of alloy electrodes with Co3O4 significantly increases,and the maximum discharge capacities of electrodes with 2%,4%,6% and 8% Co3O4 are higher than the electrode with no Co3O4 by 0.83%,4.86%,7.18% and 9.21%,accordingly.Linear polarization(LP) and electrochemical impedance spectroscopy(EIS) tests suggest that charge-transfer resistance decreases by the addition of Co3O4.Cyclic voltammogram(CV),scanning electron microscopy(SEM) and energy dispersive spectrum(EDS) tests indicate that Co3O4 can partly dissolve and experience a reversible oxidation-reduction process of Co to Co(OH)2,leading to the improvement in the electrochemical performance of hydrogen storage alloy.
文摘The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting...
基金supported by the National Key Program for Basic Research of China(No. 2009CB220100)the National 863 Program(No.2007AA03Z226)
文摘The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon, which is characterized as high specific surface area and microporous structure. The composite, contained 70% sulfur, as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature. It showed two reduction peaks at 2.05 V and 2.35 V, one oxidation peak at 2.4 V during cyclic voltammogram test. The initial discharge specific capacity was 1180.8 mAh g-1 and the utilization of electrochemically active sulfur was about 70.6% assuming a complete reaction to the product of Li2S. The specific capacity still kept as high as 720.4 mAh g^-1 after 60 cycles retaining 61% of the initial discharge capacity.
基金supported by the National Natural Science Foundation of China(Nos.51161015 and 50961009)the National High Technology Research and Development Program of China(No.2011AA03A408)the Natural Science Foundation of Inner Mongolia(Nos.2011ZD10 and 2010ZD05)
文摘The La-Mg-Ni-based A2B7-type Lao.8_xNdx Mgo.2Ni3.35Alo.lSio.o5 (x = 0, 0.1, 0.2, 0.3, and 0.4) electrode alloys were prepared by casting and annealing. The influence of the partial substitution of Nd for La on the structure and electrochemical performances of the alloys was investigated. The structural analysis of X-ray diffraction and scanning electron microscopy reveals that the experimental alloys consist of two major phases: (La,Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCus-type structure as well as some residual phases of LaNi3 and NdNis. The electrochemical measurements indicate that an evident change of the electrochemical performance of the alloys is associated with the substitution of Nd for La. The discharge capacity of the alloy first increases then decreases with the growing Nd content, whereas their cycle stability clearly grows all the time. Furthermore, the measurements of the high rate discharge ability, the limiting current density, and hydrogen diffusion coefficient all demonstrate that the electrochemical kinetic properties of the alloy electrodes first augment then decline with the rising amount of Nd substitution.
基金supported by the Open Project Program of Jiangxi Engineering Research Center of Process and Equipment for New Energy,East China Institute of Technology(No.JXNE2015-14)Youth Foundation of Education Department of Hebei Province(No.QN2016183)the National Natural Science Foundation of China(No.51362002)
文摘Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Projects(51471087,61370042,21173041,11204031,11472080)supported by the National Natural Science Foundation of ChinaProject(13KJA430003)supported by the Jiangsu Higher Education Institutions of ChinaProject(BK20141336)supported by the Natural Science Foundation of Jiangsu Province,China
文摘In order to improve the discharge capacity and cyclic life of Mg-Co-based alloy, ternary Mg45M5Co50 (M=Pd, Zr) alloys were synthesized via mechanical alloying. TEM analysis demonstrates that these alloys all possess body-centered cubic (BCC) phase in nano-crystalline. Electrochemical experiments show that Mg45Zr5Co50 electrode exhibits the highest capacity (425 mA·h/g) among the Mg45M5Co50 (M=Mg, Pd, Zr) alloys. And Mg45Pd5Co50 electrode lifts not only the initial discharge capacity (379 mA·h/g), but also the discharge kinetics, e.g., exchange current density and hydrogen diffusion ability from that of Mg50Co50. It could be concluded that the electrochemical performances were enhanced by substituting Zr and Pd for Mg in Mg-Co-based alloy.
基金supported by the National Projects of NSFC(21322101 and 21231005)MOE(B12015 and IRT13R30)
文摘LiNiCoAlO(NCA) with Zr(OH)coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)powders, and then characterized with scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). Experimental results show that amorphous Zr(OH)powders have been successfully coated on the surface of spherical NCA particles, exhibiting improved electrochemical performance. 0.50 wt% Zr(OH)coated NCA delivers a capacity of 197.6 mAh/g at the first cycle and 154.3 mAh/g after 100 cycles with a capacity retention of 78.1% at 1 C rate. In comparison, the pure NCA shows a capacity of 194.6 mAh/g at the first cycle and 142.5 mAh/g after 100 cycles with a capacity retention of 73.2% at 1 C rate. Electrochemical impedance spectroscopy(EIS) results show that the coated material exhibits a lower resistance, indicating that the coating layer can efficiently suppress transition metals dissolution and decrease the side reactions at the surface between the electrode and electrolyte. Therefore, surface coating with amorphous Zr(OH)is a simple and useful method to enhance the electrochemical performance of NCA-based materials for the cathode of LIBs.
基金Project supported by National Natural Science Foundation of China (50131040) and Natural Science Foundation of Inner Mon-golia (200408020706)
文摘The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of the as-cast and quenched alloys were determined and measured. The effects of rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The obtained results show that the alloys are composed of the (La, Mg) Ni3 phase (PuNi3-type structure) and the LaNi5 phase, as well as the small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast alloy containing boron, and the Ni2B phase in the alloy nearly disappears after rapid quenching. The relative amount of each phase in the alloys depends on the quenching rate. The rapid quenching technique can greatly improve the electrochemical performance of the alloy, and the effect of rapid quenching on the activation performances of the alloys is minor. Rapid quenching enhances the cycle stability of the alloy, and the cycle life of the alloy increases with the increase of the quenching rate.
基金supported by the National Scientific Foundation of China (Grant nos.21375101,90817103,and 30973672)Doctroral Fund of Ministry of Education of China (No.20110141110024)Innovation Seed Fund and Translational Medical Research Fund of Wuhan University School of Medicine
文摘A novel method for analysis of three active components curcumin, demethoxycurcumin and bisdemethoxycurcumin in Curcuma longa L. was developed by HPLC coupled with electrochemical detection. Three curcuminoids were well separated on a C18 column and detected with high sensitivity. A mobile phase containing acetonitrile and 10 mM Na2HPO4-H3PO4 (pH 5.0) (50:50, v/v) was used. Good linearity was obtained in the range of 0.208-41.6, 0.197-39.4, and 0.227-114μM for curcumin, demethoxycurcumin and bisdemethoxycurcumin respectively. The limit of detection reached up to 10 ? 8 M, which was lower than that by UV detection. The relative standard deviations (RSDs) ranged from 1.06%to 1.88%for intra-day precision and from 4.30%to 5.79%for inter-day precision, respectively. The proposed method has been applied in real herb sample and recoveries ranging from 86.3%to 111%were obtained.