Abstract The electrochemical reaction mechanism and electrocrystaUization process of tungsten in the NaCl- KCl-NaF-WO3 molten salt were investigated at 973 K (700℃) by means of cyclic voltammetry, chronopotentiomet...Abstract The electrochemical reaction mechanism and electrocrystaUization process of tungsten in the NaCl- KCl-NaF-WO3 molten salt were investigated at 973 K (700℃) by means of cyclic voltammetry, chronopotentiometry, and chronoamperometry techniques. The results show that the electrochemical reaction process of tungsten in the NaCl-KCl-NaF-WO3 molten salt system is a quasireversible process mix-controlled by ion diffusion rate and electron transport rate. Tungsten ion in this system is reduced to W(0) in two steps. The electrocrystallization process of tungsten is found to be an instantaneous, hemispheroid three-dimensional nucleation process and the tungsten ion diffusion coefficient of 2.361 × 10^-4 cm2.s^-1 is obtained at experimental conditions.展开更多
基金supported by the National Natural Science Foundation of China (No. 51074060)
文摘Abstract The electrochemical reaction mechanism and electrocrystaUization process of tungsten in the NaCl- KCl-NaF-WO3 molten salt were investigated at 973 K (700℃) by means of cyclic voltammetry, chronopotentiometry, and chronoamperometry techniques. The results show that the electrochemical reaction process of tungsten in the NaCl-KCl-NaF-WO3 molten salt system is a quasireversible process mix-controlled by ion diffusion rate and electron transport rate. Tungsten ion in this system is reduced to W(0) in two steps. The electrocrystallization process of tungsten is found to be an instantaneous, hemispheroid three-dimensional nucleation process and the tungsten ion diffusion coefficient of 2.361 × 10^-4 cm2.s^-1 is obtained at experimental conditions.