TeOx-SiO2 composite films having third-order nonlinearities were prepared by electrochemically induced sol-gel deposition method on ITO substrate.The third-order optical nonlinearities of the films were measured by Z-...TeOx-SiO2 composite films having third-order nonlinearities were prepared by electrochemically induced sol-gel deposition method on ITO substrate.The third-order optical nonlinearities of the films were measured by Z-scan technique.The third-order nonlinear susceptibilities(χ^((3))) of the as-prepared films are 5.9×10^(-7) to 4.29×10^(-6)esu.The surface morphology and composition of the films were characterized by SEM/EDX,which identified that Te metallic particles well dispersed in TeO_x-SiO_2 gel films.展开更多
The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X...The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.展开更多
The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 ...The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application.展开更多
The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to...The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.展开更多
Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment incl...Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment including application cases. It is found that the rate of chlorides removed is affected by the total charge passed, whereas increasing charge in a range between 1500 to 2000 Ah/m<sup>2</sup> increases the amount of chlorides removed and this can be more effective by increasing current density instead of duration of treatment. Bound chlorides are extracted during treatment and, water works better than Ca(OH)<sub>2</sub> as an electrolyte, possibly due to modifications on the concrete pore structure. Moreover, ECE is not efficient in repassivate structures but is efficient in its purpose of removing chlorides if treatment setup is well planned, which justifies the need for better international standards on the topic.展开更多
LiCoO2 surface layer is proposed and prepared through sol-gel method. The physical and electrochemical performances of pristine LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials were investigated by X-ray diffractio...LiCoO2 surface layer is proposed and prepared through sol-gel method. The physical and electrochemical performances of pristine LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electrochemical measurements respectively. Comparing with the pristine LiMn2O4, the LiCoO2- coated LiMn2O4 phase significantly improved cycling stability, especially at 55°C. Additionally, the thermal safety of LiMn2O4 is greatly enhanced after being coated by LiCoO2. ICP-AES measurement, structural analysis, and impedance experiments indicate that the improved electrochemical property of LiCoO2-coated LiMn2O4 should be attributed to the alleviated dissolution loss of manganese, strengthened structural stability.展开更多
Nano-amorphous TiO2 was prepared by a sol-gel method. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the composite electrode material (TiO2-NiO-C) is made of powder with ...Nano-amorphous TiO2 was prepared by a sol-gel method. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the composite electrode material (TiO2-NiO-C) is made of powder with a grain size of 36.2 nm. Doping of nickel and graphite can increase the electrical conductivity and the specific surface area of nano-amorphous TiO2. The electrochemical properties of TiO2-NiO-C, such as self-discharge, leakage current, and cycle life, were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test. With a charge-discharge current density of 500 mA/g, the specific capacity of the TiO2-NiO-C composite material reaches 12.88 mAh/g. Also, the expense of capacity is only 3.88% after 500 cycles. The electrochemical capacitor with the electrode material of TiO2-NiO-C shows excellent capacity and cycling performance.展开更多
The synthesis of silicate oxyapatitesLa10-x(SiO4)6O3-1.5x(x=0. 0.17, 0.33, 0.50 and 0.67) via a sol-gel method at 800 ℃ was reported. The apatite phases were characterized by X-ray diffraction (XRD) and conduct...The synthesis of silicate oxyapatitesLa10-x(SiO4)6O3-1.5x(x=0. 0.17, 0.33, 0.50 and 0.67) via a sol-gel method at 800 ℃ was reported. The apatite phases were characterized by X-ray diffraction (XRD) and conducting properties were studied by electrochemical impedance spectroscopy (EIS). It is found that the conductivities are influenced by the amount of cation vacancies and interstitial oxygen. The conductivity of La9.33 (SiO4)6O2 with more cation vacancies is higher than that of La9.5 (SiO4)6O2.25. The conductivity of La10 (SiO4)6O3 with more interstitial oxygen is 7.98 ×10^-3 S·cm^-1, which is about 5 times higher than that of La9.33(SiO4)6O2 at 700℃. The electrical conductivity is almost independent of the oxygen partial pressure from 105 to 1 Pa, which suggests that the oxyapatites exhibit almost pure O^2- ion conduction over a wide range of oxygen partial pressure.展开更多
To enhance the electrochemical performances of LiMn2O4 at elevated temperature (55°C), we proposed a sol-gel method to synthesize LiNi0.5Mn1.5O4 modified LiMn2O4. The physical and electrochemical performances of ...To enhance the electrochemical performances of LiMn2O4 at elevated temperature (55°C), we proposed a sol-gel method to synthesize LiNi0.5Mn1.5O4 modified LiMn2O4. The physical and electrochemical performances of pristine and LiNi0.5Mn1.5O4-coated LiMn2O4 cathode materials were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements, respectively. The results indicated that about 4-5 nm thick layer of LiNi0.5Mn1.5O4 was formed on the surface of the LiMn2O4 powders. The modified LiMn2O4 exhibited excellent storage performance at 55°C compared to the pristine one, which was attributed to the suppression of electrolyte decomposition and the reduction of Mn dissolution.展开更多
A hydrometallurgical process for the recovery of cobalt oxalate from spent lithium-ion batteries was used to recycle cobalt compound by using alkali leaching, reductive acid leaching and chemical deposition of cobalt ...A hydrometallurgical process for the recovery of cobalt oxalate from spent lithium-ion batteries was used to recycle cobalt compound by using alkali leaching, reductive acid leaching and chemical deposition of cobalt oxalate. The recycled cobalt oxalate was used to synthesize nano-Co3O4 anode material by sol-gel method. The samples were characterized by thermal gravity analysis and differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge/discharge measurements. The influence of molar ratio of Co2+ to citric acid and calcination temperature on the structure and electrochemical performance of nano-Co3O4 was evaluated. As the molar ratio of Co2+ to citric acid is 1:1, the face-centered cubic (fcc) Co3O4 powder shows the discharge capacity of 760.9 mA h g-1, the high coulombic efficiency of 99.7% in the first cycle at the current density of 125 mA g-l, and the excellent cycling performance with the reversible capacity of 442.3 mA h g-1 after 20 cycles at the current density of 250 mA g-1.展开更多
基金supported by Academic Program of Natural Science Foundation Project of CQ CSTC(No 2008BC4003)the Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University(No2007)
文摘TeOx-SiO2 composite films having third-order nonlinearities were prepared by electrochemically induced sol-gel deposition method on ITO substrate.The third-order optical nonlinearities of the films were measured by Z-scan technique.The third-order nonlinear susceptibilities(χ^((3))) of the as-prepared films are 5.9×10^(-7) to 4.29×10^(-6)esu.The surface morphology and composition of the films were characterized by SEM/EDX,which identified that Te metallic particles well dispersed in TeO_x-SiO_2 gel films.
基金financially supported by (i) Suranaree University of Technology,(ii) Thailand Science Research and Innovation,and (iii) National Science,Research and Innovation Fund(project codes 90464 and 160363)。
文摘The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.
基金Project(GuiJiaoRen[2007]71)supported by the Research Funds of the Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning,China
文摘The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application.
基金Project (0991025) supported by Natural Science Foundation of Guangxi, ChinaProject (51164007) supported by the National Natural Science Foundation of ChinaProject (201101ZD008) supported by Educational Commission of Guangxi, China
文摘The LiMnPO4/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO4/C. The XRD studies show that the pure olivine phase LiMnPO4 can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO4/C well. The LiMnPO4/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA-h/g, retaining 112.4 mA-h/g over 30 cycles at 0.05C rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO4/C.
文摘Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment including application cases. It is found that the rate of chlorides removed is affected by the total charge passed, whereas increasing charge in a range between 1500 to 2000 Ah/m<sup>2</sup> increases the amount of chlorides removed and this can be more effective by increasing current density instead of duration of treatment. Bound chlorides are extracted during treatment and, water works better than Ca(OH)<sub>2</sub> as an electrolyte, possibly due to modifications on the concrete pore structure. Moreover, ECE is not efficient in repassivate structures but is efficient in its purpose of removing chlorides if treatment setup is well planned, which justifies the need for better international standards on the topic.
文摘LiCoO2 surface layer is proposed and prepared through sol-gel method. The physical and electrochemical performances of pristine LiMn2O4 and LiCoO2-coated LiMn2O4 cathode materials were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electrochemical measurements respectively. Comparing with the pristine LiMn2O4, the LiCoO2- coated LiMn2O4 phase significantly improved cycling stability, especially at 55°C. Additionally, the thermal safety of LiMn2O4 is greatly enhanced after being coated by LiCoO2. ICP-AES measurement, structural analysis, and impedance experiments indicate that the improved electrochemical property of LiCoO2-coated LiMn2O4 should be attributed to the alleviated dissolution loss of manganese, strengthened structural stability.
文摘Nano-amorphous TiO2 was prepared by a sol-gel method. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the composite electrode material (TiO2-NiO-C) is made of powder with a grain size of 36.2 nm. Doping of nickel and graphite can increase the electrical conductivity and the specific surface area of nano-amorphous TiO2. The electrochemical properties of TiO2-NiO-C, such as self-discharge, leakage current, and cycle life, were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test. With a charge-discharge current density of 500 mA/g, the specific capacity of the TiO2-NiO-C composite material reaches 12.88 mAh/g. Also, the expense of capacity is only 3.88% after 500 cycles. The electrochemical capacitor with the electrode material of TiO2-NiO-C shows excellent capacity and cycling performance.
文摘The synthesis of silicate oxyapatitesLa10-x(SiO4)6O3-1.5x(x=0. 0.17, 0.33, 0.50 and 0.67) via a sol-gel method at 800 ℃ was reported. The apatite phases were characterized by X-ray diffraction (XRD) and conducting properties were studied by electrochemical impedance spectroscopy (EIS). It is found that the conductivities are influenced by the amount of cation vacancies and interstitial oxygen. The conductivity of La9.33 (SiO4)6O2 with more cation vacancies is higher than that of La9.5 (SiO4)6O2.25. The conductivity of La10 (SiO4)6O3 with more interstitial oxygen is 7.98 ×10^-3 S·cm^-1, which is about 5 times higher than that of La9.33(SiO4)6O2 at 700℃. The electrical conductivity is almost independent of the oxygen partial pressure from 105 to 1 Pa, which suggests that the oxyapatites exhibit almost pure O^2- ion conduction over a wide range of oxygen partial pressure.
文摘To enhance the electrochemical performances of LiMn2O4 at elevated temperature (55°C), we proposed a sol-gel method to synthesize LiNi0.5Mn1.5O4 modified LiMn2O4. The physical and electrochemical performances of pristine and LiNi0.5Mn1.5O4-coated LiMn2O4 cathode materials were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements, respectively. The results indicated that about 4-5 nm thick layer of LiNi0.5Mn1.5O4 was formed on the surface of the LiMn2O4 powders. The modified LiMn2O4 exhibited excellent storage performance at 55°C compared to the pristine one, which was attributed to the suppression of electrolyte decomposition and the reduction of Mn dissolution.
基金supported by Project Supported by the Planned Science and Technology Project of Hunan Province, China(Nos.2011F J3160,2011GK2002)Project Supported by Scientific Research Fund of Hunan Provincial Education Department(10B054)
文摘A hydrometallurgical process for the recovery of cobalt oxalate from spent lithium-ion batteries was used to recycle cobalt compound by using alkali leaching, reductive acid leaching and chemical deposition of cobalt oxalate. The recycled cobalt oxalate was used to synthesize nano-Co3O4 anode material by sol-gel method. The samples were characterized by thermal gravity analysis and differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge/discharge measurements. The influence of molar ratio of Co2+ to citric acid and calcination temperature on the structure and electrochemical performance of nano-Co3O4 was evaluated. As the molar ratio of Co2+ to citric acid is 1:1, the face-centered cubic (fcc) Co3O4 powder shows the discharge capacity of 760.9 mA h g-1, the high coulombic efficiency of 99.7% in the first cycle at the current density of 125 mA g-l, and the excellent cycling performance with the reversible capacity of 442.3 mA h g-1 after 20 cycles at the current density of 250 mA g-1.