期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Exosomes-loaded electroconductive nerve dressing for nerve regeneration and pain relief against diabetic peripheral nerve injury 被引量:2
1
作者 Qinfeng Yang Shenghui Su +10 位作者 Shencai Liu Sheng Yang Jing Xu Yixiu Zhong Yusheng Yang Liangjie Tian Zilin Tan Jian Wang Zhiqiang Yu Zhanjun Shi Fangguo Liang 《Bioactive Materials》 SCIE CSCD 2023年第8期194-215,共22页
Over the years,electroconductive hydrogels(ECHs)have been extensively applied for stimulating nerve regeneration and restoring locomotor function after peripheral nerve injury(PNI)with diabetes,given their favorable m... Over the years,electroconductive hydrogels(ECHs)have been extensively applied for stimulating nerve regeneration and restoring locomotor function after peripheral nerve injury(PNI)with diabetes,given their favorable mechanical and electrical properties identical to endogenous nerve tissue.Nevertheless,PNI causes the loss of locomotor function and inflammatory pain,especially in diabetic patients.It has been established that bone marrow stem cells-derived exosomes(BMSCs-Exos)have analgesic,anti-inflammatory and tissue regeneration properties.Herein,we designed an ECH loaded with BMSCs-Exos(ECH-Exos)electroconductive nerve dressing to treat diabetic PNI to achieve functional recovery and pain relief.Given its potent adhesive and self-healing properties,this laminar dressing is convenient for the treatment of damaged nerve fibers by automatically wrapping around them to form a size-matched tube-like structure,avoiding the cumbersome implantation process.Our in vitro studies showed that ECH-Exos could facilitate the attachment and migration of Schwann cells.Meanwhile,Exos in this system could modulate M2 macrophage polarization via the NF-κB pathway,thereby attenuating inflammatory pain in diabetic PNI.Additionally,ECH-Exos enhanced myelinated axonal regeneration via the MEK/ERK pathway in vitro and in vivo,consequently ameliorating muscle denervation atrophy and further promoting functional restoration.Our findings suggest that the ECH-Exos system has huge prospects for nerve regeneration,functional restoration and pain relief in patients with diabetic PNI. 展开更多
关键词 Diabetic peripheral nerve injury EXOSOMES electroconductive hydrogel Nerve regeneration Pain relief
原文传递
Self-curling electroconductive nerve dressing for enhancing peripheral nerve regeneration in diabetic rats 被引量:1
2
作者 Can Liu Lei Fan +9 位作者 Zhenming Tian Huiquan Wen Lei Zhou Pengfei Guan Yian Luo Chuncheung Chan Guoxin Tan Chengyun Ning Limin Rong Bin Liu 《Bioactive Materials》 SCIE 2021年第11期3892-3903,共12页
Conductive scaffolds have been shown to exert a therapeutic effect on patients suffering from peripheral nerve injuries(PNIs).However,conventional conductive conduits are made of rigid structures and have limited appl... Conductive scaffolds have been shown to exert a therapeutic effect on patients suffering from peripheral nerve injuries(PNIs).However,conventional conductive conduits are made of rigid structures and have limited applications for impaired diabetic patients due to their mechanical mismatch with neural tissues and poor plasticity.We propose the development of biocompatible electroconductive hydrogels(ECHs)that are identical to a surgical dressing in this study.Based on excellent adhesive and self-healing properties,the thin film-like dressing can be easily attached to the injured nerve fibers,automatically warps a tubular structure without requiring any invasive techniques.The ECH offers an intimate and stable electrical bridge coupling with the electrogenic nerve tissues.The in vitro experiments indicated that the ECH promoted the migration and adhesion of the Schwann cells.Furthermore,the ECH facilitated axonal regeneration and remyelination in vitro and in vivo through the MEK/ERK pathway,thus preventing muscle denervation atrophy while retaining functional recovery.The results of this study are likely to facilitate the development of non-invasive treatment techniques for PNIs in diabetic patients utilizing electroconductive hydrogels. 展开更多
关键词 Diabetic peripheral nerve injury electroconductive hydrogel Axonal regeneration Nerve remyelination
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部