A series of photosensitive random copolymers (UPDHES) were prepared by introducing acrylate groups onto the side chain of the copolymer backbone of N, N-domethyl amimethyl methacrylate (DMAEMA), 2-hydroxypropyl ac...A series of photosensitive random copolymers (UPDHES) were prepared by introducing acrylate groups onto the side chain of the copolymer backbone of N, N-domethyl amimethyl methacrylate (DMAEMA), 2-hydroxypropyl acrylate (HEA), 2-ethylhexyl acrylate (EHA), and styrene (St) (PDHES). The molecular structure of UPDHES was characterized by FTIR, 1HNMR and GPC. The photopolymerization kinetics of UPDHES with different C=C content was investigated using real time FTIR in which it was found that the UPDHES system had notable photosensitivity. The effect of C=C content on the properties of cured films were studied by evaluating various film properties such as thermal stability, glass transition temperature and tensile properties. The thermal degradation of cured films was investigated via thermogravimetric analysis/infrared spectrometry (TGA-IR). Thus a series of UV-curable electrodeposition coatings with good photosensitivity and mechanical properties were prepared from a low-cost photosensitive random copolymer.展开更多
Ni-W-P composite coatings reinforced by Ce O2 and Si O2 nano-particles on the surface of common carbon steels, were prepared by double pulse electrodeposition. The crystallization course was characterized by phase str...Ni-W-P composite coatings reinforced by Ce O2 and Si O2 nano-particles on the surface of common carbon steels, were prepared by double pulse electrodeposition. The crystallization course was characterized by phase structures, crystallinity, grain sizes and microstructures. The results indicate that as-deposited composite coating is amorphous. Whereas it turns into the crystalline structure with 98.25% crystallinity, and Ni3 P, Ni2 P and Ni5P2 alloy phases precipitate from structures at 400 °C. Thereafter, Ni2 P and Ni5P2 metastable alloy phases turn into Ni3 P stable alloy phase at 500 °C. The crystallization course of the composite coating has finished when being heat-treated at 700 °C. The average sizes of Ni grains increase with the rise of heat treatment temperature from400 °C to 700 °C. Ce O2 and Si O2 nano-particles deposited into Ni-W-P alloys can delay the crystallization course and habit the growth of alloy phases.展开更多
Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surfac...Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surface morphology, wear resistance, and oxidation resistance of Ni/TiC/Attapulgite nano-composite coatings were investigated. The experimental results show that the composite coating is flat and compact with adding 3.0 g/L in the bath, and the coating preferred orientation is changed from the planes(111) to(200). The coefficient of the composite coatings decreases from 0.68 to 0.18 with increasing content of attapulgite in the bath, a mixed mode of adhesive-abrasive wear occurs for all coatings, and the wear mechanism shows a transition from adhesive-abrasive to predominantly abrasive wear mechanism when the concentration of attapulgite is beyond 1.5 g/L in electrolyte. The oxidation resistance of composite coatings is the best prepared when adding attapulgite particles at 0.5 g/L in the bath, the oxide mainly consists of a NiO phase by X-ray analysis.展开更多
Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding whee...Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding wheels were then prepared from Ni-coated diamond composite powders with different activators. The microstructural characterizations of this composite powders were finally conducted by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, and the mechanical and tribological properties of as-prepared diamond grinding wheels were also measured. There are changes in microstructures and properties of the composite powders with activators. The activator concentration also has an influence on the morphologies and phase structures of the Ni coating on diamond particles.The composite powders with more compact coating of nickel can be prepared by adding 1 g dm^(-3) or more AgNO_3 as an activator to electrodeposit nickel on diamond. The mechanical and tribological properties of diamond grinding wheels were significantly improved when the coating phase structure of Ni crystal grew with(111) plane orientation on the surface of diamond particles. The wheels made from nickel coated diamond composite powders possessed the advantages of easy preparation and outstanding tribological properties. Therefore, Ni coated diamond composite powders exhibit a great potential to be extensively applied in diamond cutting and grinding tools.展开更多
基金Funded by the National Natural Science Foundation of China (50673038 and 20704017)the Innovation Foundation of Jiangsu(BY2011118)
文摘A series of photosensitive random copolymers (UPDHES) were prepared by introducing acrylate groups onto the side chain of the copolymer backbone of N, N-domethyl amimethyl methacrylate (DMAEMA), 2-hydroxypropyl acrylate (HEA), 2-ethylhexyl acrylate (EHA), and styrene (St) (PDHES). The molecular structure of UPDHES was characterized by FTIR, 1HNMR and GPC. The photopolymerization kinetics of UPDHES with different C=C content was investigated using real time FTIR in which it was found that the UPDHES system had notable photosensitivity. The effect of C=C content on the properties of cured films were studied by evaluating various film properties such as thermal stability, glass transition temperature and tensile properties. The thermal degradation of cured films was investigated via thermogravimetric analysis/infrared spectrometry (TGA-IR). Thus a series of UV-curable electrodeposition coatings with good photosensitivity and mechanical properties were prepared from a low-cost photosensitive random copolymer.
基金Project(20806035)supported by the National Natural Science Foundation of ChinaProject(2009CI026)supported by the Back-up Personnel Foundation of Academic and Technology Leaders of Yunnan Province,ChinaProject(KKZ6200927001)supported by the Opening Fund of Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences
文摘Ni-W-P composite coatings reinforced by Ce O2 and Si O2 nano-particles on the surface of common carbon steels, were prepared by double pulse electrodeposition. The crystallization course was characterized by phase structures, crystallinity, grain sizes and microstructures. The results indicate that as-deposited composite coating is amorphous. Whereas it turns into the crystalline structure with 98.25% crystallinity, and Ni3 P, Ni2 P and Ni5P2 alloy phases precipitate from structures at 400 °C. Thereafter, Ni2 P and Ni5P2 metastable alloy phases turn into Ni3 P stable alloy phase at 500 °C. The crystallization course of the composite coating has finished when being heat-treated at 700 °C. The average sizes of Ni grains increase with the rise of heat treatment temperature from400 °C to 700 °C. Ce O2 and Si O2 nano-particles deposited into Ni-W-P alloys can delay the crystallization course and habit the growth of alloy phases.
基金Founded by the National Natural Youth Science Fundation of China(51301086)the Scientific Research Fund of Nanjing Institute of Technology Doctoral(N20130222 and CKJB201205)the Nanjing Institute of Technology,China
文摘Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surface morphology, wear resistance, and oxidation resistance of Ni/TiC/Attapulgite nano-composite coatings were investigated. The experimental results show that the composite coating is flat and compact with adding 3.0 g/L in the bath, and the coating preferred orientation is changed from the planes(111) to(200). The coefficient of the composite coatings decreases from 0.68 to 0.18 with increasing content of attapulgite in the bath, a mixed mode of adhesive-abrasive wear occurs for all coatings, and the wear mechanism shows a transition from adhesive-abrasive to predominantly abrasive wear mechanism when the concentration of attapulgite is beyond 1.5 g/L in electrolyte. The oxidation resistance of composite coatings is the best prepared when adding attapulgite particles at 0.5 g/L in the bath, the oxide mainly consists of a NiO phase by X-ray analysis.
基金funded by the National Natural Science Foundation of China (Nos. 21476066 and 51271074)
文摘Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding wheels were then prepared from Ni-coated diamond composite powders with different activators. The microstructural characterizations of this composite powders were finally conducted by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, and the mechanical and tribological properties of as-prepared diamond grinding wheels were also measured. There are changes in microstructures and properties of the composite powders with activators. The activator concentration also has an influence on the morphologies and phase structures of the Ni coating on diamond particles.The composite powders with more compact coating of nickel can be prepared by adding 1 g dm^(-3) or more AgNO_3 as an activator to electrodeposit nickel on diamond. The mechanical and tribological properties of diamond grinding wheels were significantly improved when the coating phase structure of Ni crystal grew with(111) plane orientation on the surface of diamond particles. The wheels made from nickel coated diamond composite powders possessed the advantages of easy preparation and outstanding tribological properties. Therefore, Ni coated diamond composite powders exhibit a great potential to be extensively applied in diamond cutting and grinding tools.