In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square success...In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.展开更多
目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的...目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的空间特征;然后利用基于多头注意力的递归神经网络生成多上下文向量进行高层抽象特征提取;最后利用全连接层进行情感分类。在DEAP(Database for Emotion Analysis using Physiological signals)数据集上进行实验,CR-MCV在唤醒和效价维度上分类准确率分别为88.09%和89.30%。实验结果表明,CR-MCV在利用电极空间位置信息和不同时段情感状态显著性特征基础上,能够自适应地分配特征的注意力并强化情感状态显著性信息。展开更多
为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络...为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。展开更多
Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo- gram signals using nonli...Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo- gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran- scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula- tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula- tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag- netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangrning is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.展开更多
Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime,...Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.展开更多
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w...At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.展开更多
文摘In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals.
文摘目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的空间特征;然后利用基于多头注意力的递归神经网络生成多上下文向量进行高层抽象特征提取;最后利用全连接层进行情感分类。在DEAP(Database for Emotion Analysis using Physiological signals)数据集上进行实验,CR-MCV在唤醒和效价维度上分类准确率分别为88.09%和89.30%。实验结果表明,CR-MCV在利用电极空间位置信息和不同时段情感状态显著性特征基础上,能够自适应地分配特征的注意力并强化情感状态显著性信息。
文摘为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。
基金supported by the National Natural Science Foundation of China,No.31100711,51377045,31300818the Natural Science Foundation of Hebei Province,No.H2013202176
文摘Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo- gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran- scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula- tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula- tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag- netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangrning is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.
基金Science Foundation of Educational Commission of Fujian Province of China (Grant NO:JAO04238)
文摘Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.
基金Supported by the National Natural Science Foundation of China(No.51775325)National Key R&D Program of China(No.2018YFB1309200)the Young Eastern Scholars Program of Shanghai(No.QD2016033).
文摘At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.