Purpose: Implant therapy restores masticatory function by restoring lost tooth morphology. It has been shown that mastication contributes not only to food intake and digestion, but also to the improvement of overall h...Purpose: Implant therapy restores masticatory function by restoring lost tooth morphology. It has been shown that mastication contributes not only to food intake and digestion, but also to the improvement of overall health. However, there have been no studies on the effects of implant treatment on electroencephalography (EEG). In this study, we investigated the effects of restoration of masticatory function by implant treatment on EEG and stress. Methods: 13 subjects (6 males, 7 females, age 64.1 ± 5.8 years) who had lost masticatory function due to tooth loss and 11 healthy subjects (6 males, 5 females, age 47.6 ± 2.4 years) as a control group. EEG (θ, α, β waves, α/β ratio) and salivary cortisol were measured before immediate dental implant treatment and every month of treatment for 6 months. EEG (θ, α, β waves, α/β ratio) was measured with a simple electroencephalograph miniature DAQ terminal (Intercross-410, Intercross Co., Ltd., Japan) in a resting closed-eye condition, and salivary cortisol was measured using an ELISA kit. Results: Compared to the control group, the appearance of θ and α waves were significantly decreased and β waves were increased, and α/β ratio was significantly decreased. The cortisol level of the subject group was significantly higher compared with the control group. With the course of implant treatment, the appearance of θ and α waves of the subject group increased, while β waves decreased. However, no significant difference was observed. The α/β ratio of the subject group increased from the first month after implant treatment and increased significantly after 5 and 6 months (0 vs. 5 months: p < 0.05, 0 vs. 6 months: p < 0.01). The cortisol levels in the subject group decreased from the first month after implant treatment and significantly decreased after 3 or 4 months (0 vs. 3 months: p < 0.05, 0 vs. 4 months: p < 0.01). These results suggest that tooth loss causes mental stress, which decreases brain stimulation and affects function. Restoration of masticatory function by implants was suggested to alleviate the effects on brain function and stress.展开更多
Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system.EEG based neonatal sleep staging provides valuable information about an infant’s growth and h...Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system.EEG based neonatal sleep staging provides valuable information about an infant’s growth and health,but is challenging due to the unique characteristics of EEG and lack of standardized protocols.This study aims to develop and compare 18 machine learning models using Automated Machine Learning(autoML)technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification.The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning.The data is obtained from neonates at post-menstrual age 37±05 weeks.352530-s EEG segments from 19 infants are used to train and test the proposed models.There are twelve time and frequency domain features extracted from each channel.Each model receives the common features of nine channels as an input vector of size 108.Each model’s performance was evaluated based on a variety of evaluation metrics.The maximum mean accuracy of 84.78%and kappa of 69.63%has been obtained by the AutoML-based Random Forest estimator.This is the highest accuracy for EEG-based sleep-wake classification,until now.While,for the AutoML-based Adaboost Random Forest model,accuracy and kappa were 84.59%and 69.24%,respectively.High performance achieved in the proposed autoML-based approach can facilitate early identification and treatment of sleep-related issues in neonates.展开更多
文摘Purpose: Implant therapy restores masticatory function by restoring lost tooth morphology. It has been shown that mastication contributes not only to food intake and digestion, but also to the improvement of overall health. However, there have been no studies on the effects of implant treatment on electroencephalography (EEG). In this study, we investigated the effects of restoration of masticatory function by implant treatment on EEG and stress. Methods: 13 subjects (6 males, 7 females, age 64.1 ± 5.8 years) who had lost masticatory function due to tooth loss and 11 healthy subjects (6 males, 5 females, age 47.6 ± 2.4 years) as a control group. EEG (θ, α, β waves, α/β ratio) and salivary cortisol were measured before immediate dental implant treatment and every month of treatment for 6 months. EEG (θ, α, β waves, α/β ratio) was measured with a simple electroencephalograph miniature DAQ terminal (Intercross-410, Intercross Co., Ltd., Japan) in a resting closed-eye condition, and salivary cortisol was measured using an ELISA kit. Results: Compared to the control group, the appearance of θ and α waves were significantly decreased and β waves were increased, and α/β ratio was significantly decreased. The cortisol level of the subject group was significantly higher compared with the control group. With the course of implant treatment, the appearance of θ and α waves of the subject group increased, while β waves decreased. However, no significant difference was observed. The α/β ratio of the subject group increased from the first month after implant treatment and increased significantly after 5 and 6 months (0 vs. 5 months: p < 0.05, 0 vs. 6 months: p < 0.01). The cortisol levels in the subject group decreased from the first month after implant treatment and significantly decreased after 3 or 4 months (0 vs. 3 months: p < 0.05, 0 vs. 4 months: p < 0.01). These results suggest that tooth loss causes mental stress, which decreases brain stimulation and affects function. Restoration of masticatory function by implants was suggested to alleviate the effects on brain function and stress.
文摘Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system.EEG based neonatal sleep staging provides valuable information about an infant’s growth and health,but is challenging due to the unique characteristics of EEG and lack of standardized protocols.This study aims to develop and compare 18 machine learning models using Automated Machine Learning(autoML)technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification.The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning.The data is obtained from neonates at post-menstrual age 37±05 weeks.352530-s EEG segments from 19 infants are used to train and test the proposed models.There are twelve time and frequency domain features extracted from each channel.Each model receives the common features of nine channels as an input vector of size 108.Each model’s performance was evaluated based on a variety of evaluation metrics.The maximum mean accuracy of 84.78%and kappa of 69.63%has been obtained by the AutoML-based Random Forest estimator.This is the highest accuracy for EEG-based sleep-wake classification,until now.While,for the AutoML-based Adaboost Random Forest model,accuracy and kappa were 84.59%and 69.24%,respectively.High performance achieved in the proposed autoML-based approach can facilitate early identification and treatment of sleep-related issues in neonates.