The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were inve...The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.展开更多
The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from...The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from the examined results of SEM, AFM and XRD that surface morphology and microstructure of Co-Ni-Al2O3 coatings appear to be mainly influenced by variations in Co content. The high Co content coatings with hcp lattice structure have a more uniform and fine structure than that of low Co content coatings with fcc lattice structure. The codeposition of Al2O3 particles in Co-Ni alloys can not change the phase structure of solid solution, only affects the growth and orientation of crystal planes and mostly increase the d value of lattice.展开更多
An alternative to conventional process for the preparation of soft magnetic metal foils of Fe,Fe-Ni,Fe-Co and Fe-Ni-Co by electroforming was described.The microstructure and magnetic properties were observed.The resul...An alternative to conventional process for the preparation of soft magnetic metal foils of Fe,Fe-Ni,Fe-Co and Fe-Ni-Co by electroforming was described.The microstructure and magnetic properties were observed.The results showed that the crystal size of the iron-based alloy foil is less than 10μm,while that of nickel-based alloy foil is about 2μm.Moreover,the electroformed Fe-Ni foil has better magnetic properties than the conventional milled permalloy 1J79 foil.展开更多
Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的...Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的质量要求,并对国产Invar合金箔和国外进口Invar合金箔内的夹杂物进行了表征分析。结果表明,国产Invar合金箔的纯净度与进口Invar合金箔相比,仍存在很大的差距,主要体现在夹杂物的尺寸和数量等方面。为实现OLED配套产业全国产化,攻克Invar合金的近零夹杂难题,开发新型制备技术是关键突破点。最后详细论述了超重力技术在Invar合金除杂方面的研究成果和电铸Invar合金箔应用的可行性,并指出超重力技术和电铸技术有望解决近零夹杂金属材料的制备难题。展开更多
文摘The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.
文摘The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from the examined results of SEM, AFM and XRD that surface morphology and microstructure of Co-Ni-Al2O3 coatings appear to be mainly influenced by variations in Co content. The high Co content coatings with hcp lattice structure have a more uniform and fine structure than that of low Co content coatings with fcc lattice structure. The codeposition of Al2O3 particles in Co-Ni alloys can not change the phase structure of solid solution, only affects the growth and orientation of crystal planes and mostly increase the d value of lattice.
基金Sponsored by National Science Foundation for Distinguished Young Scholars of China(50225415)
文摘An alternative to conventional process for the preparation of soft magnetic metal foils of Fe,Fe-Ni,Fe-Co and Fe-Ni-Co by electroforming was described.The microstructure and magnetic properties were observed.The results showed that the crystal size of the iron-based alloy foil is less than 10μm,while that of nickel-based alloy foil is about 2μm.Moreover,the electroformed Fe-Ni foil has better magnetic properties than the conventional milled permalloy 1J79 foil.
文摘Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的质量要求,并对国产Invar合金箔和国外进口Invar合金箔内的夹杂物进行了表征分析。结果表明,国产Invar合金箔的纯净度与进口Invar合金箔相比,仍存在很大的差距,主要体现在夹杂物的尺寸和数量等方面。为实现OLED配套产业全国产化,攻克Invar合金的近零夹杂难题,开发新型制备技术是关键突破点。最后详细论述了超重力技术在Invar合金除杂方面的研究成果和电铸Invar合金箔应用的可行性,并指出超重力技术和电铸技术有望解决近零夹杂金属材料的制备难题。