Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ...Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.展开更多
Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different...Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.展开更多
In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on or...In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data.展开更多
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a...The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.展开更多
Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding...Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5 , the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1 , and the accuracy of the rate error is less than 3%. [展开更多
A combined deep machine learning(DML)and collocation based approach to solve the partial differential equations using artificial neural networks is proposed.The developed method is applied to solve problems governed b...A combined deep machine learning(DML)and collocation based approach to solve the partial differential equations using artificial neural networks is proposed.The developed method is applied to solve problems governed by the Sine–Gordon equation(SGE),the scalar wave equation and elasto-dynamics.Two methods are studied:one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta(RK)time integration.The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples.Based on the results,the relative normalized error was observed to be less than 5%in all cases.展开更多
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron...Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.展开更多
In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks w...In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.展开更多
Coastal defenses such as the breakwaters are important structures to maintain the navigation conditions in a harbor.The estimation of their hydrodynamic characteristics is conventionally done using physical models,sub...Coastal defenses such as the breakwaters are important structures to maintain the navigation conditions in a harbor.The estimation of their hydrodynamic characteristics is conventionally done using physical models,subjecting to higher costs and prolonged procedures.Soft computing methods prove to be useful tools,in cases where the data availability from physical models is limited.The present paper employs adaptive neuro-fuzzy inference system(ANFIS)and artificial neural network(ANN)models to the data obtained from physical model studies to develop a novel methodology to predict the reflection coefficient(Kr)of seaside perforated semicircular breakwaters under low wave heights,for which no physical model data is available.The prediction was done using the input parameters viz.,incident wave height(Hi),wave period(T),center-to-center spacing of perforations(S),diameter of perforations(D),radius of semicircular caisson(R),water depth(d),and semicircular breakwater structure height(hs).The study shows the prediction below the available data range of wave heights is possible by ANFIS and ANN models.However,the ANFIS performed better with R^2=0.9775 and the error reduced in comparison with the ANN model with R2=0.9751.Study includes conventional data segregation and prediction using ANN and ANFIS.展开更多
Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharm...Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.展开更多
In order to sufficiently exploit the advantages of different signal processing methods, such as wavelet transformation (WT), artificial neural networks (ANN) and expert rules (ER),a synthesized multi-method was introd...In order to sufficiently exploit the advantages of different signal processing methods, such as wavelet transformation (WT), artificial neural networks (ANN) and expert rules (ER),a synthesized multi-method was introduced to detect and classify the epileptic waves in the EEG data. Using this method, at first, the epileptic waves were detected from pre-processed EEG data at different scales by WT, then the characteristic parameters of the chosen candidates of epileptic waves were extracted and sent into the well-trained ANN to identify and classify the true epileptic waves,and at last, the detected epileptic waves were certificated by ER. The statistic results of detection and classification show that, the synthesized multi-method has a good capacity to extract signal features and to shield the signals from the random noise. This method is especially fit for the analysis of the biomedical signals in biomedical engineering which are usually non-placid and nonlinear.展开更多
基金supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-122)the Fund support of Science and Technology on Transient Impact Laboratory。
文摘Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.
文摘Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.
基金Projects(51875558,51471176)supported by the National Natural Science Foundation of ChinaProject(2017YFB1302802)supported by the National Key R&D Program of China。
文摘In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data.
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)
文摘The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.
文摘Data from the deformation on Split Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5 , the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1 , and the accuracy of the rate error is less than 3%. [
基金the funds from the Department of Science and Technology(DST),Science and Engineering Research Board(SERB),India(No.SRG/2019/001581).
文摘A combined deep machine learning(DML)and collocation based approach to solve the partial differential equations using artificial neural networks is proposed.The developed method is applied to solve problems governed by the Sine–Gordon equation(SGE),the scalar wave equation and elasto-dynamics.Two methods are studied:one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta(RK)time integration.The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples.Based on the results,the relative normalized error was observed to be less than 5%in all cases.
基金The research work described herein was funded by the National Natural Science Foundation of China(Grant No.51922067)The Key Research and Development Plan of Shandong Province of China(Grant No.2020ZLYS01)Taishan Scholars Program of Shan-dong Province of China(Grant No.tsqn201909003).
文摘Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.
文摘In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.
文摘Coastal defenses such as the breakwaters are important structures to maintain the navigation conditions in a harbor.The estimation of their hydrodynamic characteristics is conventionally done using physical models,subjecting to higher costs and prolonged procedures.Soft computing methods prove to be useful tools,in cases where the data availability from physical models is limited.The present paper employs adaptive neuro-fuzzy inference system(ANFIS)and artificial neural network(ANN)models to the data obtained from physical model studies to develop a novel methodology to predict the reflection coefficient(Kr)of seaside perforated semicircular breakwaters under low wave heights,for which no physical model data is available.The prediction was done using the input parameters viz.,incident wave height(Hi),wave period(T),center-to-center spacing of perforations(S),diameter of perforations(D),radius of semicircular caisson(R),water depth(d),and semicircular breakwater structure height(hs).The study shows the prediction below the available data range of wave heights is possible by ANFIS and ANN models.However,the ANFIS performed better with R^2=0.9775 and the error reduced in comparison with the ANN model with R2=0.9751.Study includes conventional data segregation and prediction using ANN and ANFIS.
基金Supported by the Talented Young Pressional Foundation of Jilin Province(No 2005123)
文摘Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.
文摘In order to sufficiently exploit the advantages of different signal processing methods, such as wavelet transformation (WT), artificial neural networks (ANN) and expert rules (ER),a synthesized multi-method was introduced to detect and classify the epileptic waves in the EEG data. Using this method, at first, the epileptic waves were detected from pre-processed EEG data at different scales by WT, then the characteristic parameters of the chosen candidates of epileptic waves were extracted and sent into the well-trained ANN to identify and classify the true epileptic waves,and at last, the detected epileptic waves were certificated by ER. The statistic results of detection and classification show that, the synthesized multi-method has a good capacity to extract signal features and to shield the signals from the random noise. This method is especially fit for the analysis of the biomedical signals in biomedical engineering which are usually non-placid and nonlinear.