A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic p...A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaCl solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10-3 mm3/m and 0.13-0.177, 3.056×10-4 mm3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.展开更多
A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposite...A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.展开更多
The effect of chemical plating with Ni Co P alloy on the properties of MH electrodes is investigated. The results show that the efficiency of storage alloy and the activation of MH electrode have been improved by intr...The effect of chemical plating with Ni Co P alloy on the properties of MH electrodes is investigated. The results show that the efficiency of storage alloy and the activation of MH electrode have been improved by introducing 1.74% cobalt in the Ni Co P alloy coating. The initial discharge capacity is 208 mAh/g. The maximum discharge capacity gets to 298.5 mAh/g. At the same time the cycle life of MH electrodes is improved. The discharge capacity of MH electrodes coated with Ni Co P is 88% of the maximum discharge capacity after 300 cycles. Whereas the discharge capacity of bare alloy electrodes retains 62% of the maximum capacity after 300 cycles. An increment of discharge capacity is mainly due to the superposition of the oxidation current of Co as well as improved efficiency of microcurrent collection. The effect of Ni Co P alloy coating by electroless plating on the kinetic properties of hydride electrode has been systematically investigated by electrochemical techniques. The results indicate that the kinetic properties of MH electrodes, including exchange current density, limiting current density, have been improved markedly. This improvement of kinetic properties leads to the decrease of the overpotential of anodic and cathodic polarization.展开更多
The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and ...The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.展开更多
Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surf...Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.展开更多
The composition of magnesium alloys is greatly associated with initial deposition behavior of electroless Ni-P coatings.Thus,the initial deposition behavior of electroless Ni–P coatings on ZK60 and ME20 alloys was in...The composition of magnesium alloys is greatly associated with initial deposition behavior of electroless Ni-P coatings.Thus,the initial deposition behavior of electroless Ni–P coatings on ZK60 and ME20 alloys was investigated.The results indicated that differences in the alloy compositions significantly influenced the initial deposition process and the adhesive strength,corrosion resistance,and crystal structure.The initial deposition of coatings on ZK60 and ME20 alloys preferentially occurred on the precipitates.The precipitates in ZK60 alloy had higher chemical activity after HF activation and controlled the initial deposition rate of the coating.The initial deposition rate of the coating on ME20 alloy mainly depended on the density of the Mg F2 film formed by HF activation rather than on the precipitates.Owing to differences in the initial deposition process,the coating on ZK60 alloy had higher adhesive strength and better corrosion resistance than that on ME20 alloy.The coatings on ZK60 and ME20 alloys mainly had crystalline structures,and the coating on ME20 alloy had also a slight microcrystalline structure.展开更多
The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. T...The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.展开更多
A bath of electroless plating Ni on the AZ91D magnesium alloy, containing sulfate nickel, was given in this paper. The nucleation mechanism of Ni-P deposits on the AZ91D magnesium alloy was studied by using XRD and SE...A bath of electroless plating Ni on the AZ91D magnesium alloy, containing sulfate nickel, was given in this paper. The nucleation mechanism of Ni-P deposits on the AZ91D magnesium alloy was studied by using XRD and SEM. The electroless Ni-P deposits were preferentially nucleated on the (Mg17Al12) phase and extended to the primary and eutectic a phases of the AZ91D magnesium alloy.展开更多
High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were us...High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.展开更多
In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/el...In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P 110 steel. The obtained N i-P coating has significantly improved the surface performance of P110 steel.展开更多
In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coa...In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coating on Mg alloy AZ91D, the process of copper transition coating plated in the cyanides bath can be replaced. A new bath composed of NiSO4 was established by orthogonal test. The results show that zinc transition coating can increase the adhesion and protect the Mg alloy substrate from the bath corrosion. The optimal plating bath composition is NiSO4·6H2O 20 g/L, NaH2PO2·H2O20g/L and C6H8O7·H2O 2.5 g/L, and optimal bath acidity and optimal plating temperature are pH 4.0 and 95℃, respectively. The present process flow is composed of ultrasonic cleaning→alkaline cleaning→acid pickling→activation→double immersing zinc→electroplating zinc→electroless nickel plating→passivation treatment. The present non-cyanide process of electroless nickel plating is harmless to our surroundings and Ni-P coating on Mg alloy AZ91D produced by present process possesses good adhesion and corrosion resistance.展开更多
The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by an acid-sulfate nickel bath.Nickel sulphate and sodium tungstate were used as metal ion sources and sodium hypophosphite ...The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by an acid-sulfate nickel bath.Nickel sulphate and sodium tungstate were used as metal ion sources and sodium hypophosphite was used as reducing agent.The coating was characterized for its structure,morphologies,microhardness and corrosion properties.The presence of dense and coarse nodules in the duplex coatings was observed by SEM and EDS.Tungsten content in Ni-P/Ni-W-P alloy is about 0.65%(mass fraction) and the phosphorus content is 8.18%(mass fraction).The microhardness of the coatings is 622 VHN.The coating shows good adhesion to the substrate.The results of electrochemical analysis,the porosity and the immersion test show that Ni-P/Ni-W-P duplex coatings possess noble anticorrosion properties to protect the AZ91D magnesium alloy.展开更多
All the variables that may affect the Ni-Cu-P alloy deposition rate on polyester fabric were studied , and the activation energy and the reaction orders were determined. The deposition rate equation was also derived.
An electroless Ni-P plating treatment was applied on AZ91D magnesium alloy to improve its corrosion resistance. Optimum pretreatment conditions and optimum bath of electroless nickel plating for magnesium alloy were f...An electroless Ni-P plating treatment was applied on AZ91D magnesium alloy to improve its corrosion resistance. Optimum pretreatment conditions and optimum bath of electroless nickel plating for magnesium alloy were found through many experiments. In order to avoid bother of pre-plating medium layer, a set of procedure of direct electroless Ni-P under the acid condition was investigated. The properties of the coating with 10% phosphorus were investigated. The results show that a coating with high hardness, low porosity and good adhesive strength is obtained. X-ray diffraction patterns show that the structure of the coating is an amorphous phase. After annealing at 400℃, the amorphous phase of Ni-P is transformed to crystalline phases, and some intermetallics as Ni3P and Ni5P2 are deposited from Ni-P solid solution along with an enhancing hardness from Hv 450 to Hv 910.展开更多
Manuscript received 24 June 1999 The Fe Al P alloy deposits were plated on copper sheets by electroless plating. The change law of the deposition rate, composition, surface appearance and structure for the depo...Manuscript received 24 June 1999 The Fe Al P alloy deposits were plated on copper sheets by electroless plating. The change law of the deposition rate, composition, surface appearance and structure for the deposits was studied by changing the metallic salt ratios (AlCl 3/AlCl 3+FeSO 4), the concentration of metallic salt AlCl 3 and reductant NaH 2PO 2. The optimum plating bath was obtained. It was found that the choices of ligand and reductant were the key of increasing Al content for the deposits.展开更多
Electroless Ni-Co-P-coating of fly-ash cenosphere particles is demonstrated in the present investigation. The Electroless Ni-Co-P-coating process is modified by replacing the conventional sensitization and activation ...Electroless Ni-Co-P-coating of fly-ash cenosphere particles is demonstrated in the present investigation. The Electroless Ni-Co-P-coating process is modified by replacing the conventional sensitization and activation steps with only using activation step with Ag(NH3)2+ activator. The cenospheres are characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS) during and after the coating process. Relatively uniform coating is obtained under the given coating conditions. The possible mechanism of electroless Ni-Co-P-coating of cenospheres utilizing Ag(NH3)2+ activator is suggested. The low density Ni-Co-P coated cenospheres may be utilized for manufacturing conducting polymers for EMI-shielding application and microwave absorbing materials.展开更多
The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-...The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.展开更多
基金Project(2006031117-04) supported by Tackling Key Science and Technology of Shanxi Province, ChinaProject(07010763) supported by Academic Innovation of Taiyuan City, China
文摘A direct electroless Ni-P plating treatment was applied to AZ91D magnesium alloy for improving its corrosion resistance and wear resistance. Corrosion resistance of the Ni-P coatings was evaluated by potentiodynamic polarization and immersing experiments in 3.5% NaCl solution. The wear resistance of the coatings was investigated by the wear track and the mass change after ball-on-disk experiment. The results show that corrosion resistance and wear resistance of the AZ91D alloy are greatly improved after direct electroless Ni-P plating. No discoloration is noticed until 4 d of immersion in 3.5% NaCl solution. Potentiodynamic polarization experiments show that the free corrosion potential of magnesium alloy is shifted from -1 500 mV to -250 mV and passivation occurs at 1 350 mV after direct electroless plating. The friction coefficients and wear rates of Ni-P coating and Ni-P coating after tempering are 0.10-0.351, 9.038×10-3 mm3/m and 0.13-0.177, 3.056×10-4 mm3/m, respectively, at a load of 1.5 N with dry sliding. Although minor hurt on corrosion resistance was caused, significant improvement of wear resistance was obtained after tempering treatment of the coating.
基金supported by the National Natural Science Foundation of China (Grant No.50671006)the National R&D Infrastructure and Facility Development Program of China (2005DKA10400-Z1)
文摘A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.
文摘The effect of chemical plating with Ni Co P alloy on the properties of MH electrodes is investigated. The results show that the efficiency of storage alloy and the activation of MH electrode have been improved by introducing 1.74% cobalt in the Ni Co P alloy coating. The initial discharge capacity is 208 mAh/g. The maximum discharge capacity gets to 298.5 mAh/g. At the same time the cycle life of MH electrodes is improved. The discharge capacity of MH electrodes coated with Ni Co P is 88% of the maximum discharge capacity after 300 cycles. Whereas the discharge capacity of bare alloy electrodes retains 62% of the maximum capacity after 300 cycles. An increment of discharge capacity is mainly due to the superposition of the oxidation current of Co as well as improved efficiency of microcurrent collection. The effect of Ni Co P alloy coating by electroless plating on the kinetic properties of hydride electrode has been systematically investigated by electrochemical techniques. The results indicate that the kinetic properties of MH electrodes, including exchange current density, limiting current density, have been improved markedly. This improvement of kinetic properties leads to the decrease of the overpotential of anodic and cathodic polarization.
文摘The effects of alloying elements on zincate treatment and adhesion of electroless Ni-P coating onto various aluminum alloy substrates were examined.Surface morphology of zinc deposits in the 1st zincate treatment and its adhesion were changed depending on the alloying element.The zinc deposits in the 2nd zincate treatment became thinly uniform,and the adhesion between aluminum alloy substrate and Ni-P coating was improved irrespective of the alloying element.XPS analysis revealed the existence of zinc on the surface of each aluminum alloy substrate after the pickling in 5% nitric acid.This zinc on the surface should be an important factor influencing the morphology of zinc deposit at the 2nd zincate treatment and its adhesion.
基金The project was financially supported by The Space Foundation of Supporting-Technology of China (No. 2002EK1803)the Graduate Starting Seed Fund of Northwestern Polytechnical University (No. W016663)
文摘Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.
文摘The composition of magnesium alloys is greatly associated with initial deposition behavior of electroless Ni-P coatings.Thus,the initial deposition behavior of electroless Ni–P coatings on ZK60 and ME20 alloys was investigated.The results indicated that differences in the alloy compositions significantly influenced the initial deposition process and the adhesive strength,corrosion resistance,and crystal structure.The initial deposition of coatings on ZK60 and ME20 alloys preferentially occurred on the precipitates.The precipitates in ZK60 alloy had higher chemical activity after HF activation and controlled the initial deposition rate of the coating.The initial deposition rate of the coating on ME20 alloy mainly depended on the density of the Mg F2 film formed by HF activation rather than on the precipitates.Owing to differences in the initial deposition process,the coating on ZK60 alloy had higher adhesive strength and better corrosion resistance than that on ME20 alloy.The coatings on ZK60 and ME20 alloys mainly had crystalline structures,and the coating on ME20 alloy had also a slight microcrystalline structure.
文摘The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.
文摘A bath of electroless plating Ni on the AZ91D magnesium alloy, containing sulfate nickel, was given in this paper. The nucleation mechanism of Ni-P deposits on the AZ91D magnesium alloy was studied by using XRD and SEM. The electroless Ni-P deposits were preferentially nucleated on the (Mg17Al12) phase and extended to the primary and eutectic a phases of the AZ91D magnesium alloy.
基金financially supported by the Special Foundation of the Shanghai Education Commission for Nano-Materials Research (0852nm01400)Shanghai Leading Academic Discipline Project (J51402)
文摘High-temperature tribological properties of Ni-P alloy coatings processed by electro-brush plating on 20CrMo steel have been investigated. A baU-on-disc configuration was employed and 4 mm diameter Si3N4 balls were used as static counterpart. All the wear tests were carried out at 450℃ for 180 rain without lubricants. The electro-brush plating Ni-P coating is amorphous in as-deposited condition, and it becomes polycrystalline with the formation of Ni and Ni3P after heat treatment at 450℃for 1 h. The friction coefficient of the Ni-P coating is just 50% of that of the 20CrMo steel at the friction temperature of 450℃. A mild adhesive wear mechanism was found for the electro-brush plating Ni-P coating tested at 450℃, whereas for the 20CrMo steel at the same temperature a mixed adhesive and abrasive wear mechanism was observed.
基金Funded by the China Postdoctoral Science Foundation(No.2012M520604)the Natural Science Foundation for Young Scientists of Shanxi Province(No.2013021013-2)
文摘In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P 110 steel. The obtained N i-P coating has significantly improved the surface performance of P110 steel.
文摘In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coating on Mg alloy AZ91D, the process of copper transition coating plated in the cyanides bath can be replaced. A new bath composed of NiSO4 was established by orthogonal test. The results show that zinc transition coating can increase the adhesion and protect the Mg alloy substrate from the bath corrosion. The optimal plating bath composition is NiSO4·6H2O 20 g/L, NaH2PO2·H2O20g/L and C6H8O7·H2O 2.5 g/L, and optimal bath acidity and optimal plating temperature are pH 4.0 and 95℃, respectively. The present process flow is composed of ultrasonic cleaning→alkaline cleaning→acid pickling→activation→double immersing zinc→electroplating zinc→electroless nickel plating→passivation treatment. The present non-cyanide process of electroless nickel plating is harmless to our surroundings and Ni-P coating on Mg alloy AZ91D produced by present process possesses good adhesion and corrosion resistance.
基金Project(2004CB619301)supported by the National Basic Research Program of ChinaProject supported by the"985"Project of JilinUniversity,ChinaProject(2007KZ09)supported by the 2007 Science and Technology Support Plan of Changchun City,China
文摘The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by an acid-sulfate nickel bath.Nickel sulphate and sodium tungstate were used as metal ion sources and sodium hypophosphite was used as reducing agent.The coating was characterized for its structure,morphologies,microhardness and corrosion properties.The presence of dense and coarse nodules in the duplex coatings was observed by SEM and EDS.Tungsten content in Ni-P/Ni-W-P alloy is about 0.65%(mass fraction) and the phosphorus content is 8.18%(mass fraction).The microhardness of the coatings is 622 VHN.The coating shows good adhesion to the substrate.The results of electrochemical analysis,the porosity and the immersion test show that Ni-P/Ni-W-P duplex coatings possess noble anticorrosion properties to protect the AZ91D magnesium alloy.
文摘All the variables that may affect the Ni-Cu-P alloy deposition rate on polyester fabric were studied , and the activation energy and the reaction orders were determined. The deposition rate equation was also derived.
基金Project (2006031117-04) supported by the Key Technique Item of Shanxi Province, China
文摘An electroless Ni-P plating treatment was applied on AZ91D magnesium alloy to improve its corrosion resistance. Optimum pretreatment conditions and optimum bath of electroless nickel plating for magnesium alloy were found through many experiments. In order to avoid bother of pre-plating medium layer, a set of procedure of direct electroless Ni-P under the acid condition was investigated. The properties of the coating with 10% phosphorus were investigated. The results show that a coating with high hardness, low porosity and good adhesive strength is obtained. X-ray diffraction patterns show that the structure of the coating is an amorphous phase. After annealing at 400℃, the amorphous phase of Ni-P is transformed to crystalline phases, and some intermetallics as Ni3P and Ni5P2 are deposited from Ni-P solid solution along with an enhancing hardness from Hv 450 to Hv 910.
文摘Manuscript received 24 June 1999 The Fe Al P alloy deposits were plated on copper sheets by electroless plating. The change law of the deposition rate, composition, surface appearance and structure for the deposits was studied by changing the metallic salt ratios (AlCl 3/AlCl 3+FeSO 4), the concentration of metallic salt AlCl 3 and reductant NaH 2PO 2. The optimum plating bath was obtained. It was found that the choices of ligand and reductant were the key of increasing Al content for the deposits.
基金sponsored by Hunan Provincial Natural Science Foundation of China(04JJ3035)the Research Fund of the Educational Ministry of Hunan Province(03B002)
文摘Electroless Ni-Co-P-coating of fly-ash cenosphere particles is demonstrated in the present investigation. The Electroless Ni-Co-P-coating process is modified by replacing the conventional sensitization and activation steps with only using activation step with Ag(NH3)2+ activator. The cenospheres are characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS) during and after the coating process. Relatively uniform coating is obtained under the given coating conditions. The possible mechanism of electroless Ni-Co-P-coating of cenospheres utilizing Ag(NH3)2+ activator is suggested. The low density Ni-Co-P coated cenospheres may be utilized for manufacturing conducting polymers for EMI-shielding application and microwave absorbing materials.
文摘The electrochemical behavior of Cu-Zn-Al shape memory alloy (SMA) with andwithout electroless plated Ni-P was investigated by electrochemical methods, in artificial Tyrode'ssolution. The results showed that Cu-Zn-Al SMA engendered dezincification corrosion in Tyrode'ssolution. The anodic active current densities as well as electrochemical dissolution sensitivity ofthe electroless plated Ni-P Cu-Zn-Al SMA increased with NaCl concentration rising, pH of solutiondecreasing and environmental temperature uprising. X-ray diffraction analysis indicated that aftersurface modification by electroless plated Ni-P, an amorphous plated film formed on the surface ofCu-Zn-Al SMA. This film can effectively isolate matrix metal from corrosion media and significantlyimprove the electrochemical property of Cu-Zn-Al SMA in artificial Tyrode's solution.