Copper has been deposited on the surface of multiwailed carbon nanombes (MWNTs) and inside MWNTs by electroless deposition. The as-prepared Cu-MWNT composite materials have been characterized by X-ray diffractometer...Copper has been deposited on the surface of multiwailed carbon nanombes (MWNTs) and inside MWNTs by electroless deposition. The as-prepared Cu-MWNT composite materials have been characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), and electrochemical measurement. XRD analyses showed that Cu was a face-centered cubic (fcc) structure. The average size of Cu was calculated by Scherrer's formula from XRD data, and it was 11 nm. TEM revealed that Cu grains on the surface of MWNTs were uniform with the sizes of about 30-60 nm. The electrochemical measurement indicated that Cu-MWNT composite materials possessed fine electron conductivity.展开更多
Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM) and X-r...Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) spectrometer were used to examine surface morphology and structure of the as-plated coating. Differential scanning calorimeter (DSC) and transmission electronic microscopy (TEM) were used to study the coating's phase change at high temperature. The coating's corrosive behavior in 3%NaCl + 5%H2SO4 solution was also investigated. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. In high-temperature condition, Ni3P precipitation and Ni crystallization took place in both coatings but at different temperatures, while the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels. The anti-corrosion property was better in the CeO2-containing coating, and this was due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart. Ni-P/CeO2 coating's pure amorphous structure was the result of Ni's hindered crystal-typed deposition and P's promoted deposition.展开更多
Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance result...Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance resulting from large volume change of Si during lithiation and delithiation processes restrict their widespread application.Herein,we report the preparation of multi-shell coated Si(DS-Si)nanocomposites by in-situ electroless deposition method using Si granules as the active materials and copper sulfate as Cu sources.The ratio of Si and Cu was readily tuned by varying the concentration of copper sulfate.The multi-shell(Cu@CuxSi/SiO2)coating on Si surface promotes the formation of robust and dense SEI films and the transportation of electron.Thus,the obtained DS-Si composites exhibit an initial coulombic efficiency of 86.2%,a capacity of 1636 mAh g^-1 after 100 discharge-charge cycles at 840 mA g^-1,and an average charge capacity of 1493 mAh g^-1 at 4200 mA g^-1.This study provides a low-cost and large-scale approach to the preparation of nanostructured Si-metal composites anodes with good electrochemical performance for lithium ion batteries.展开更多
Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of ...Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of the deposit increased, whereas the cobalt and phosphorus contents decreased. The structure of the deposit was investigated using X-ray diffraction (XRD) and transmission electron microscope (TEM). The deposit consisted of hexahedron phase Co, cubic phase Fe-Co, and amorphous phase (crystalline). The magnetic performances of the deposit were studied using vibrating sample magnetometer (VSM). The more the content of Fe and the less the content of P (the content of Co being less), the better the magnetic performances of the deposit. The Co-Fe-P deposit was suitable for use as soft magnetic material.展开更多
Titanium dioxide nanotubes(TNTs)were prepared by electroless deposition using ion track etched polycarbonate templates.The ion tracks were prepared to the desired diameter of the TNTs outer diameter.Titanium dioxide n...Titanium dioxide nanotubes(TNTs)were prepared by electroless deposition using ion track etched polycarbonate templates.The ion tracks were prepared to the desired diameter of the TNTs outer diameter.Titanium dioxide nanotubes with a diameter of minimum 80 nm having a wall thickness of minimum 10 nm can be fabricated using this method.To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several steps procedure under aqueous conditions at nearly room temperature.The presented approach will process open end nanotubes with well defined outer diameter and wall thickness.Using this method TNT arrays up to 109 tubes per cm2having a tube length up to 30μm can be produced,single tubes are also possible.The structural properties of the grown TNTs were investigated by using various analytical techniques,i.e.scanning electron microscopy(SEM),energy dispersive X-ray fluoresence spectrometer(EDX),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),Raman spectroscopy and Photoluminescence.展开更多
Tungsten-doped silver films were prepared by immersing hydrogen-terminated silicon wafers into the solution of 2.5 mmol/L[Ag2WO4]+0.1 mol/L HF at 50℃.Their growth and composition were characterized with atomic force ...Tungsten-doped silver films were prepared by immersing hydrogen-terminated silicon wafers into the solution of 2.5 mmol/L[Ag2WO4]+0.1 mol/L HF at 50℃.Their growth and composition were characterized with atomic force microscopy and X-ray photoelectron spectroscopy,respectively.The effect of tungstate ions on the deposition of silver was investigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM)by comparing W-doped Ag film with Ag film.It is found that the molar fraction of tungsten in the deposits is about 2.3%and the O to W molar ratio was about 4.0 and W-doped Ag films have good anti-corrosion in air at 350℃.The doping of tungsten cannot change the deposition of silver.展开更多
This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroles...This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.展开更多
The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition ...The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition as plated were measured. The formation mechanism of the deposits was discussed. The parameter for amorphous structures formation was suggested for the deposits.展开更多
Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiati...Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.展开更多
An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating...An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating. The deposition mechanism of the electroless Ni-P plating on AZ31 Mg alloy was studied by OCP curve, scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). The process of electroless Ni-P plating contains the coating formation stage and the coating growth stage. The formation stage includes three procedures, i.e., the nucleation and growth of Ni crystallites, the extension of the coating in two-dimensional (2D) direction and the coalescence of the coating along three-dimensional (3D) direction. SEM investigations demonstrate that the spherical nodules of the Ni-P coating are not only formed during the coating growth stage, but also generated in the initial deposition stage of electroless Ni-P plating. The variation of the coating rates at different deposition stages corresponds to the deposition mechanism of their respective deposition stage.展开更多
This investigation was undertaken to predict the mass gain (MG) of cobalt electroless deposition (ED) on ceramic SiC particles.Response surface methodology (RSM) based on a full factorial design with three ED pa...This investigation was undertaken to predict the mass gain (MG) of cobalt electroless deposition (ED) on ceramic SiC particles.Response surface methodology (RSM) based on a full factorial design with three ED parameters and 30 runs was used to conduct the experiments and to establish a mathematical model by means of Design-Expert software.Three ED parameters considered were pH,bath temperature and ceramic particle morphology.Analysis of variance was applied to validate the predicted model.The results of confirmation analysis by scanning electron microscopy (SEM) show that the developed models are reasonably accurate.The pH is the most effective parameter for the MG.Also,the highest mass gain is obtained for the lowest pH,highest bath temperatures and heat-treated SiC particles.In addition,the developed model shows that the optimal parameters to get a maximum value of mass gain are pH,bath temperature and ceramic particle state of 8,70 ℃ and heat treatment,respectively.展开更多
A technology for electroless Ni-P deposition on AZ91D from a low cost plating bath containing sulfate nickel was proposed. The seal pretreatment was employed before the electroless Ni-P deposition for the sake of occl...A technology for electroless Ni-P deposition on AZ91D from a low cost plating bath containing sulfate nickel was proposed. The seal pretreatment was employed before the electroless Ni-P deposition for the sake of occluding the micro holes of the cast magnesium alloy and interdicting the bubble formation in the Ni-P coating during plating process. And pickling pretreatment can provide a better adhesion between the Ni-P deposition and AZ91D substrate. The deposition speed of the Ni-P coating is 29 μm/h. The technology is employed to AZ91D magnesium alloy automobile parts and can provide high hardness and high wear-resistant. The weight losses of Ni-P plated and heat-treated Ni-P plated magnesium alloy specimen are only about 1/6 and 1/10 that of bare magnesium alloy specimen after 10 min abrasion wear, respectively. The hardness of the electroless Ni-P plated brake pedal support brackets is 674.1 VHN and 935.7 VHN after 2 hours heat treatments at 180 C. The adhesion of Ni-P coatings on magnesium alloy substrates meets the demands of ISO Standards 2819. The technology is environment friendly and cannot cause hazard to environment because of absence of chromate in the whole process.展开更多
Electroless Ni-Fe-P alloys in an alkaline bath were plated. The effects of deposition parameters on the plating rate and the coating composition were examined. The weight loss test and the anodic polarization measurem...Electroless Ni-Fe-P alloys in an alkaline bath were plated. The effects of deposition parameters on the plating rate and the coating composition were examined. The weight loss test and the anodic polarization measurement of the deposits in 3.5 wt pct NaCI solution (pH7.0) showed that the deposits with the mole ratio of NiS04/FeSO4 being 0.07:0.03, pH8.0 and 7.5 possess better corrosion resistance than that of the other deposits and the Ni-Fe-P deposits did not form passive films in this environment. In 5.0 wt pct NaOH solution, the Ni-Fe-P deposits have better corrosion resistance and formed passive films.展开更多
An electroless deposition(ELD) method is introduced to fabricate a metal nanoplug for its advantages of simplicity,low cost and auto-selectivity.It was demonstrated that nanoplugs of less than 50 nm in diameter can ...An electroless deposition(ELD) method is introduced to fabricate a metal nanoplug for its advantages of simplicity,low cost and auto-selectivity.It was demonstrated that nanoplugs of less than 50 nm in diameter can be fabricated by ELD nickel on various substrates,such as silicon,tungsten and titanium nitride.The main composition of the ELD nanoplug was characterized as nickel by an energy dispersive X-ray microanalyzer.A functional vertical phase-change random access memory(PCRAM) device with a heater diameter of around 9μm was fabricated by using the ELD method.TheⅠ-Ⅴcharacteristics demonstrated that the threshold current is only 90.8μA.This showed that the ELD process can satisfy the demands of PCRAM device application,as well as device performance improvement.The ELD process provides a promising method for the simple and low-cost fabrication of metal nanoplugs.展开更多
This study shows a silver electrodeposition model (EDM) on a graphite substrate. The electrolyte was a 0.01 M solution of pure silver and chromium nitrate using an electrolyzing cell. EDC with current density up to 20...This study shows a silver electrodeposition model (EDM) on a graphite substrate. The electrolyte was a 0.01 M solution of pure silver and chromium nitrate using an electrolyzing cell. EDC with current density up to 20 mA/cm<sup>2</sup> and 15 mV and pulse current were studied. Results revealed that silver deposited at a rate of 0.515 mg/cm<sup>2</sup>/min with 12 mA/cm<sup>2</sup> that decreases to 0.21 and 0.16 mg/cm<sup>2</sup>·min with the decrease of current density to 6 and 5 mA/cm<sup>2</sup> respectively. The model postulates that silver ions (a) were first hydrated before diffusing (b) from the solution bulk to the cathode vicinity, The next step (c) involved the chemical adsorption of these ions on certain accessible sites of the graphite substrate (anode), The discharged entities (d) adhere to the graphite surface by Van der Vales force. Silver ions are deposited because the discharge potential of silver is low (0.38 mV) as compared to other metal ions like chromium (0.82 mV). Pulse current controls silver deposition due to flexibility in controlling steps (a)-(c) of the deposition mechanisms. Parameters like current density, current on-time, current-off time, duty cycle (ratio of current on time and total pulse time) and pulse frequency influenced the shape and size of the deposits. Step (b) suggested that silver particles were deposited in a monolayer thickness. The silver layer turned multiple after fully satisfying the accessible sites with the monolayer. The activation energy ΔE value amounts to 86.32 kJ/mol/K. At high temperature and current density, homogeneous diffusion occurs.展开更多
A bath of electroless plating Ni on the AZ91D magnesium alloy, containing sulfate nickel, was given in this paper. The nucleation mechanism of Ni-P deposits on the AZ91D magnesium alloy was studied by using XRD and SE...A bath of electroless plating Ni on the AZ91D magnesium alloy, containing sulfate nickel, was given in this paper. The nucleation mechanism of Ni-P deposits on the AZ91D magnesium alloy was studied by using XRD and SEM. The electroless Ni-P deposits were preferentially nucleated on the (Mg17Al12) phase and extended to the primary and eutectic a phases of the AZ91D magnesium alloy.展开更多
The corrosion resistance of electroless Ni-P deposits with phosphorous contents from 12% to 14% in sodium chloride solutions was studied. The deposits were immersed in 3.5% NaCl solutions for 29 d to obtain the electr...The corrosion resistance of electroless Ni-P deposits with phosphorous contents from 12% to 14% in sodium chloride solutions was studied. The deposits were immersed in 3.5% NaCl solutions for 29 d to obtain the electrochemical parameters and were examined in a standard salt spray test for 15 d respectively. The corrosion resistance of the deposits was studied by poten- tio-dynamic scan, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and cold-field emission scanning electron microscopy (FE-SEM) equipped with an energy dispersive X-ray detector (EDX). The patterns of XRD and the results of FE-SEM showed that the prepared deposits were amorphous. But after a 15 d standard salt spray test, a few pinholes appeared on the surface of the deposit and the weight content of phosphorus on the surface of the deposit was higher (which was beneficial to the formation of the passivation films) than that before the standard salt spray test when the nickel content was lower because the dissolved weight of nickel was greater than that of phosphorus. The results from potentio-dynamic scan and EIS showed that passivation films formed on the Ni-P deposit after immersion in the NaCl solutions, which decreased the corrosion rate of Ni-P samples. The results of this work show their potential applications in marine corrosion.展开更多
The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by an acid-sulfate nickel bath.Nickel sulphate and sodium tungstate were used as metal ion sources and sodium hypophosphite ...The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by an acid-sulfate nickel bath.Nickel sulphate and sodium tungstate were used as metal ion sources and sodium hypophosphite was used as reducing agent.The coating was characterized for its structure,morphologies,microhardness and corrosion properties.The presence of dense and coarse nodules in the duplex coatings was observed by SEM and EDS.Tungsten content in Ni-P/Ni-W-P alloy is about 0.65%(mass fraction) and the phosphorus content is 8.18%(mass fraction).The microhardness of the coatings is 622 VHN.The coating shows good adhesion to the substrate.The results of electrochemical analysis,the porosity and the immersion test show that Ni-P/Ni-W-P duplex coatings possess noble anticorrosion properties to protect the AZ91D magnesium alloy.展开更多
The comparison study of the relations between the hardness, wear capacity and heat treatment temperature of the electroless nickel deposition with the electroplating deposits of chromium were conducted .The results sh...The comparison study of the relations between the hardness, wear capacity and heat treatment temperature of the electroless nickel deposition with the electroplating deposits of chromium were conducted .The results showed that the hardness and wear capacity of the electroplate technology were superior than that of electroless in general cases, but with the raising of the heat treatment temperature, the hardness and wear capacity of the samples treated by electroless deposition technology were superior obviously than that of electroplate.展开更多
基金This work was financially supported by the Natural Science Foundation of Guangdong Province, China (No. 04300695) and the Starting-up Research Foundation of Jinan University (No 51204022)
文摘Copper has been deposited on the surface of multiwailed carbon nanombes (MWNTs) and inside MWNTs by electroless deposition. The as-prepared Cu-MWNT composite materials have been characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), and electrochemical measurement. XRD analyses showed that Cu was a face-centered cubic (fcc) structure. The average size of Cu was calculated by Scherrer's formula from XRD data, and it was 11 nm. TEM revealed that Cu grains on the surface of MWNTs were uniform with the sizes of about 30-60 nm. The electrochemical measurement indicated that Cu-MWNT composite materials possessed fine electron conductivity.
基金supported by National Natural Science Foundation of China (No.29233011)Natural Science Foundation of Jiangsu Province (No.07KJD430246).
文摘Electroless Ni-P/nano-CeO2 composite coating was prepared in acidic condition, and its microstructure and corrosive property were compared with its CeO2-free counterpart. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) spectrometer were used to examine surface morphology and structure of the as-plated coating. Differential scanning calorimeter (DSC) and transmission electronic microscopy (TEM) were used to study the coating's phase change at high temperature. The coating's corrosive behavior in 3%NaCl + 5%H2SO4 solution was also investigated. The results showed that Ni-P coating had partial amorphous structure mixed with nano-crystals, while the Ni-P/CeO2 coating had perfect amorphous structure. In high-temperature condition, Ni3P precipitation and Ni crystallization took place in both coatings but at different temperatures, while the Ni-P/CeO2 coating had sintered phase of NiCe2O4 spinels. The anti-corrosion property was better in the CeO2-containing coating, and this was due to its less liability to undergo local-cell corrosion than its CeO2-free counterpart. Ni-P/CeO2 coating's pure amorphous structure was the result of Ni's hindered crystal-typed deposition and P's promoted deposition.
基金supported by the China Postdoctoral Science Foundation(2018M632575)the National Natural Science Foundation of China(21875197 and 21621091)the National Key Research and Development of China(2016YFB0100202)。
文摘Si-based materials have been extensively studied because of their high theoretical capacity,low working potential,and abundant reserves,but serious initial irreversible capacity loss and poor cyclic performance resulting from large volume change of Si during lithiation and delithiation processes restrict their widespread application.Herein,we report the preparation of multi-shell coated Si(DS-Si)nanocomposites by in-situ electroless deposition method using Si granules as the active materials and copper sulfate as Cu sources.The ratio of Si and Cu was readily tuned by varying the concentration of copper sulfate.The multi-shell(Cu@CuxSi/SiO2)coating on Si surface promotes the formation of robust and dense SEI films and the transportation of electron.Thus,the obtained DS-Si composites exhibit an initial coulombic efficiency of 86.2%,a capacity of 1636 mAh g^-1 after 100 discharge-charge cycles at 840 mA g^-1,and an average charge capacity of 1493 mAh g^-1 at 4200 mA g^-1.This study provides a low-cost and large-scale approach to the preparation of nanostructured Si-metal composites anodes with good electrochemical performance for lithium ion batteries.
基金Acknowledgements-This work was supported by the Fujian Provincial Natural Science Foundation of China (No. E0210020).
文摘Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of the deposit increased, whereas the cobalt and phosphorus contents decreased. The structure of the deposit was investigated using X-ray diffraction (XRD) and transmission electron microscope (TEM). The deposit consisted of hexahedron phase Co, cubic phase Fe-Co, and amorphous phase (crystalline). The magnetic performances of the deposit were studied using vibrating sample magnetometer (VSM). The more the content of Fe and the less the content of P (the content of Co being less), the better the magnetic performances of the deposit. The Co-Fe-P deposit was suitable for use as soft magnetic material.
文摘Titanium dioxide nanotubes(TNTs)were prepared by electroless deposition using ion track etched polycarbonate templates.The ion tracks were prepared to the desired diameter of the TNTs outer diameter.Titanium dioxide nanotubes with a diameter of minimum 80 nm having a wall thickness of minimum 10 nm can be fabricated using this method.To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several steps procedure under aqueous conditions at nearly room temperature.The presented approach will process open end nanotubes with well defined outer diameter and wall thickness.Using this method TNT arrays up to 109 tubes per cm2having a tube length up to 30μm can be produced,single tubes are also possible.The structural properties of the grown TNTs were investigated by using various analytical techniques,i.e.scanning electron microscopy(SEM),energy dispersive X-ray fluoresence spectrometer(EDX),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),Raman spectroscopy and Photoluminescence.
基金Projects(5072106250835009)supported by the National Natural Science Foundation of China
文摘Tungsten-doped silver films were prepared by immersing hydrogen-terminated silicon wafers into the solution of 2.5 mmol/L[Ag2WO4]+0.1 mol/L HF at 50℃.Their growth and composition were characterized with atomic force microscopy and X-ray photoelectron spectroscopy,respectively.The effect of tungstate ions on the deposition of silver was investigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM)by comparing W-doped Ag film with Ag film.It is found that the molar fraction of tungsten in the deposits is about 2.3%and the O to W molar ratio was about 4.0 and W-doped Ag films have good anti-corrosion in air at 350℃.The doping of tungsten cannot change the deposition of silver.
文摘This paper showed simple and effective synthesis of copper nanoparticles within controlled diameter using direct electroless deposition on glass substrates, following the sensitization and activation steps. Electroless-deposited metals, such as Cu, Co, Ni, and Ag, and their alloys had many advantages in micro- and nanotechnologies. The structural, morphological, and optical properties of copper deposits were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. The structural data was further analyzed using the Rietveld refinement program. Structural studies reveal that the deposited copper prefers a (111) orientation. AFM studies suggest the deposited materials form compact, uniform, and nanocrystalline phases with a high tendency to self-organize. The data show that the particle size can be controlled by controlling the activator concentration. The absorption spectra of the as-deposited copper nanoparticles reveal that the plasmonic peak broadens and exhibits a blue shift with decreasing particle size.
文摘The preparation, formation mechanism, surface appearance and structure of electroless plating Fe-Mo-W-B amorphous alloys were systematically studied. The deposition rates of the deposits in different bath composition as plated were measured. The formation mechanism of the deposits was discussed. The parameter for amorphous structures formation was suggested for the deposits.
文摘Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China
文摘An in situ method was designed to measure a continuous open circuit potential (OCP) curve of AZ31 magnesium alloy and to observe the morphology variation of Ni-P coating during the process of the electroless plating. The deposition mechanism of the electroless Ni-P plating on AZ31 Mg alloy was studied by OCP curve, scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). The process of electroless Ni-P plating contains the coating formation stage and the coating growth stage. The formation stage includes three procedures, i.e., the nucleation and growth of Ni crystallites, the extension of the coating in two-dimensional (2D) direction and the coalescence of the coating along three-dimensional (3D) direction. SEM investigations demonstrate that the spherical nodules of the Ni-P coating are not only formed during the coating growth stage, but also generated in the initial deposition stage of electroless Ni-P plating. The variation of the coating rates at different deposition stages corresponds to the deposition mechanism of their respective deposition stage.
文摘This investigation was undertaken to predict the mass gain (MG) of cobalt electroless deposition (ED) on ceramic SiC particles.Response surface methodology (RSM) based on a full factorial design with three ED parameters and 30 runs was used to conduct the experiments and to establish a mathematical model by means of Design-Expert software.Three ED parameters considered were pH,bath temperature and ceramic particle morphology.Analysis of variance was applied to validate the predicted model.The results of confirmation analysis by scanning electron microscopy (SEM) show that the developed models are reasonably accurate.The pH is the most effective parameter for the MG.Also,the highest mass gain is obtained for the lowest pH,highest bath temperatures and heat-treated SiC particles.In addition,the developed model shows that the optimal parameters to get a maximum value of mass gain are pH,bath temperature and ceramic particle state of 8,70 ℃ and heat treatment,respectively.
基金Foundation of National Key Basic Research and Development Program(No.2004CB619301)Project 985-Automotive Engineering of Jilin University
文摘A technology for electroless Ni-P deposition on AZ91D from a low cost plating bath containing sulfate nickel was proposed. The seal pretreatment was employed before the electroless Ni-P deposition for the sake of occluding the micro holes of the cast magnesium alloy and interdicting the bubble formation in the Ni-P coating during plating process. And pickling pretreatment can provide a better adhesion between the Ni-P deposition and AZ91D substrate. The deposition speed of the Ni-P coating is 29 μm/h. The technology is employed to AZ91D magnesium alloy automobile parts and can provide high hardness and high wear-resistant. The weight losses of Ni-P plated and heat-treated Ni-P plated magnesium alloy specimen are only about 1/6 and 1/10 that of bare magnesium alloy specimen after 10 min abrasion wear, respectively. The hardness of the electroless Ni-P plated brake pedal support brackets is 674.1 VHN and 935.7 VHN after 2 hours heat treatments at 180 C. The adhesion of Ni-P coatings on magnesium alloy substrates meets the demands of ISO Standards 2819. The technology is environment friendly and cannot cause hazard to environment because of absence of chromate in the whole process.
基金This work was supported by the Natural Science Foundation of Fujian Province under grant No.E0210020.
文摘Electroless Ni-Fe-P alloys in an alkaline bath were plated. The effects of deposition parameters on the plating rate and the coating composition were examined. The weight loss test and the anodic polarization measurement of the deposits in 3.5 wt pct NaCI solution (pH7.0) showed that the deposits with the mole ratio of NiS04/FeSO4 being 0.07:0.03, pH8.0 and 7.5 possess better corrosion resistance than that of the other deposits and the Ni-Fe-P deposits did not form passive films in this environment. In 5.0 wt pct NaOH solution, the Ni-Fe-P deposits have better corrosion resistance and formed passive films.
基金Project supported by the National High-Tech Research and Development Program of China(No2008AA031402)the National Natural Science Foundation of China(Nos60606024,61076077)
文摘An electroless deposition(ELD) method is introduced to fabricate a metal nanoplug for its advantages of simplicity,low cost and auto-selectivity.It was demonstrated that nanoplugs of less than 50 nm in diameter can be fabricated by ELD nickel on various substrates,such as silicon,tungsten and titanium nitride.The main composition of the ELD nanoplug was characterized as nickel by an energy dispersive X-ray microanalyzer.A functional vertical phase-change random access memory(PCRAM) device with a heater diameter of around 9μm was fabricated by using the ELD method.TheⅠ-Ⅴcharacteristics demonstrated that the threshold current is only 90.8μA.This showed that the ELD process can satisfy the demands of PCRAM device application,as well as device performance improvement.The ELD process provides a promising method for the simple and low-cost fabrication of metal nanoplugs.
文摘This study shows a silver electrodeposition model (EDM) on a graphite substrate. The electrolyte was a 0.01 M solution of pure silver and chromium nitrate using an electrolyzing cell. EDC with current density up to 20 mA/cm<sup>2</sup> and 15 mV and pulse current were studied. Results revealed that silver deposited at a rate of 0.515 mg/cm<sup>2</sup>/min with 12 mA/cm<sup>2</sup> that decreases to 0.21 and 0.16 mg/cm<sup>2</sup>·min with the decrease of current density to 6 and 5 mA/cm<sup>2</sup> respectively. The model postulates that silver ions (a) were first hydrated before diffusing (b) from the solution bulk to the cathode vicinity, The next step (c) involved the chemical adsorption of these ions on certain accessible sites of the graphite substrate (anode), The discharged entities (d) adhere to the graphite surface by Van der Vales force. Silver ions are deposited because the discharge potential of silver is low (0.38 mV) as compared to other metal ions like chromium (0.82 mV). Pulse current controls silver deposition due to flexibility in controlling steps (a)-(c) of the deposition mechanisms. Parameters like current density, current on-time, current-off time, duty cycle (ratio of current on time and total pulse time) and pulse frequency influenced the shape and size of the deposits. Step (b) suggested that silver particles were deposited in a monolayer thickness. The silver layer turned multiple after fully satisfying the accessible sites with the monolayer. The activation energy ΔE value amounts to 86.32 kJ/mol/K. At high temperature and current density, homogeneous diffusion occurs.
文摘A bath of electroless plating Ni on the AZ91D magnesium alloy, containing sulfate nickel, was given in this paper. The nucleation mechanism of Ni-P deposits on the AZ91D magnesium alloy was studied by using XRD and SEM. The electroless Ni-P deposits were preferentially nucleated on the (Mg17Al12) phase and extended to the primary and eutectic a phases of the AZ91D magnesium alloy.
文摘The corrosion resistance of electroless Ni-P deposits with phosphorous contents from 12% to 14% in sodium chloride solutions was studied. The deposits were immersed in 3.5% NaCl solutions for 29 d to obtain the electrochemical parameters and were examined in a standard salt spray test for 15 d respectively. The corrosion resistance of the deposits was studied by poten- tio-dynamic scan, electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and cold-field emission scanning electron microscopy (FE-SEM) equipped with an energy dispersive X-ray detector (EDX). The patterns of XRD and the results of FE-SEM showed that the prepared deposits were amorphous. But after a 15 d standard salt spray test, a few pinholes appeared on the surface of the deposit and the weight content of phosphorus on the surface of the deposit was higher (which was beneficial to the formation of the passivation films) than that before the standard salt spray test when the nickel content was lower because the dissolved weight of nickel was greater than that of phosphorus. The results from potentio-dynamic scan and EIS showed that passivation films formed on the Ni-P deposit after immersion in the NaCl solutions, which decreased the corrosion rate of Ni-P samples. The results of this work show their potential applications in marine corrosion.
基金Project(2004CB619301)supported by the National Basic Research Program of ChinaProject supported by the"985"Project of JilinUniversity,ChinaProject(2007KZ09)supported by the 2007 Science and Technology Support Plan of Changchun City,China
文摘The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by an acid-sulfate nickel bath.Nickel sulphate and sodium tungstate were used as metal ion sources and sodium hypophosphite was used as reducing agent.The coating was characterized for its structure,morphologies,microhardness and corrosion properties.The presence of dense and coarse nodules in the duplex coatings was observed by SEM and EDS.Tungsten content in Ni-P/Ni-W-P alloy is about 0.65%(mass fraction) and the phosphorus content is 8.18%(mass fraction).The microhardness of the coatings is 622 VHN.The coating shows good adhesion to the substrate.The results of electrochemical analysis,the porosity and the immersion test show that Ni-P/Ni-W-P duplex coatings possess noble anticorrosion properties to protect the AZ91D magnesium alloy.
文摘The comparison study of the relations between the hardness, wear capacity and heat treatment temperature of the electroless nickel deposition with the electroplating deposits of chromium were conducted .The results showed that the hardness and wear capacity of the electroplate technology were superior than that of electroless in general cases, but with the raising of the heat treatment temperature, the hardness and wear capacity of the samples treated by electroless deposition technology were superior obviously than that of electroplate.