A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs)...A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs) using a radio frequency plasma deposition system. The source material of the DLC is n-butylamine. The devices consist of indium tin oxide (ITO)/MEH-PPV/DLC/Al. Electron injection properties are investigated through I-V characteristics,and the mechanism of electron injection enhancement due to a thin DLC layer has been studied. It is found that: (1) a DLC layer thinner than 1.0nm leads to a higher turn-on voltage and decreased electroluminescent (EL) efficiency; (2) a 5.0nm DLC layer significantly enhances the electron injection and results in the lowest turn-on voltage and the highest EL efficiency; (3) DLC layer that exceeds 5.0nm results in poor device performance;and(4) EL emission can hardly be detected when the layer exceeds 10.0nm. The properties of ITO/MEH-PPV/DLC/Al and ITO/MEH-PPV/LiF/Al are investigated comparatively.展开更多
A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the elec...A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.展开更多
At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect de...At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence intensity has a power law dependence on the dc bias current. The photodiode ideality factor could be obtained by a fitting a relationship between the electroluminescence intensity and the bias current. The device defect levels will be easily determined according to the infrared image and the extracted ideality factor value. This work is of guiding significance for current solar cell testing and research.展开更多
A new blue electroluminescent material, distyrylarylene(DSA) derivative, 4,4' bis[2,2 (1 naphthyl,phenyl)vinyl] 1,1' biphenyl(NPVBi) is designed and synthesized. The DSA derivative shows better thermal s...A new blue electroluminescent material, distyrylarylene(DSA) derivative, 4,4' bis[2,2 (1 naphthyl,phenyl)vinyl] 1,1' biphenyl(NPVBi) is designed and synthesized. The DSA derivative shows better thermal stability because of its high glass transition temperature. A blue organic light emitting diode(OLED) with the structure ITO/TPD/NPVBi/Alq/LiF/Al is studied. The electroluminescent(EL) spectrum of the OLED exhibits that light emission originates from NPVBi with a peak at 460 nm, its Commission Internationale de l'Eclairage(CIE) color coordinates are x=0.16, y=0.15, and showing independence of CIE color coordinates on current density. The new DSA derivative is expectable as a new candidate for blue light emitter in OLEDs.展开更多
This paper describes the design, synthesis and characterization of a hydrogen-bonded molecular duplex with 1,8-naphthalimide fluorescent pendants. The two oligoamide molecular strands, with complementary hydrogen bond...This paper describes the design, synthesis and characterization of a hydrogen-bonded molecular duplex with 1,8-naphthalimide fluorescent pendants. The two oligoamide molecular strands, with complementary hydrogen bond sequences of DDADAA and AADADD, can form an ultra stable self-assembly duplex. Its molecular structure was confu-med by ^1H NMR and ESI-MS, and its photoluminescence properties were determined. The resulting duplex exhibited a dramatically enhanced photoluminescence (PL) quantum efficiency of 63.7% compared to the corresponding 1,8-naphthalimide segment (32.4%), suggesting that the formation of the duplex with larger molecular weight could successfully inhibit the quenching of the fluorescent pendant. This novel duplex is a prospective candidate for new electroluminescent emitter.展开更多
An organic electroluminescent (EL) device has been constructed with a double quantum-well structure consisting of N, N'-bis-(1-naphthl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) doped with 5,6,11,...An organic electroluminescent (EL) device has been constructed with a double quantum-well structure consisting of N, N'-bis-(1-naphthl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) doped with 5,6,11,12-tetraphenylnaphthacene (rubrene) as a potential well and emitter, and undoped NPB as a barrier potential. The maximum ELefficiency and brightness reach 5.6cd/A and 40000cd/m^(2), respectively. Most importantly, with the increase of the drive voltage, the EL efficiency (cd/A) declines very slowly after reaching its maximum, almost independent of the drive voltage in a wide range from 5 to 13 V. This characteristic may be useful in the improvement of the lifetime of the device.展开更多
Blue-green electroluminescence has been observed in free-standing diamond films which were deposited by microwave plasma assisted CVD on silicon substrates.The electroluminescence device is driven by a 60 Hz power sup...Blue-green electroluminescence has been observed in free-standing diamond films which were deposited by microwave plasma assisted CVD on silicon substrates.The electroluminescence device is driven by a 60 Hz power supply.The threshold voltage was about 112 V peak-to-peak.The electroluminescence spectrum at room temperature,showed a blue-green band with the peak centered at 485nm suggesting band A type emission.Electroluminescence was also observed at 77K.展开更多
An Electroluminescent device with PVK film doped with Eu(TTA) 3 Phen and PBD was fabricated. The device structure of glass substrate/indium tin oxide/PPV/PVK∶ Eu(TTA) 3 Phen∶PBD/Alq 3/Al was employed. A sharply...An Electroluminescent device with PVK film doped with Eu(TTA) 3 Phen and PBD was fabricated. The device structure of glass substrate/indium tin oxide/PPV/PVK∶ Eu(TTA) 3 Phen∶PBD/Alq 3/Al was employed. A sharply red electroluminescence with a maximum luminance of 56.8 cd/m 2 at 48 V was achieved.展开更多
A novel binuclear europium P-diketone complex with squaric acid ligand was synthesized for the first time. Its structure was elucidated by IR, UV, and Elemental Analysis. Red light emitting diode (LED) was fabricated ...A novel binuclear europium P-diketone complex with squaric acid ligand was synthesized for the first time. Its structure was elucidated by IR, UV, and Elemental Analysis. Red light emitting diode (LED) was fabricated by using the novel europium complex as an emitting layer, tris(8-quinolinolate) aluminum (III) (Alq(3)) as an electron-transporting layer, N, N'-diphenyl-N, N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole-transporting layer. A cell structure of indium-tin-oxide/TPD/Eu-complex/Alq(3)/Mg: Ag was employed. Red electroluminescence was observed at room temperature with dc bias voltage of 2 V in this cell. 2 Red emission peaks at about 613 nm with maximum luminance of over 106 cd/m(2). Compared with the EL luminance from those europium complexes reported before, one from the Eu-complex is best in the same cells.展开更多
We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes(UV OLEDs) using different heterojunction structures.It is found that an energy barrier of over...We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes(UV OLEDs) using different heterojunction structures.It is found that an energy barrier of over 0.3 eV between the emissive layer(EML) and adjacent transport layer facilitates exciplex formation.The electron blocking layer effectively confines electrons in the EML,which contributes to pure UV emission and enhances efficiency.The change in EML thickness generates tunable UV emission from 376 nm to 406 nm.In addition,the UV emission excites low-energy organic function layers and produces photoluminescent emission.In UV OLED,avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency.A maximum external quantum efficiency of 1.2%with a UV emission peak of 376 nm is realized.展开更多
A new 1,3,4-oxadiazole-contanining rhenium(I) complex, with the formula [Re(CO)a(Bphen)(PTOP)], (Bphen = bathophe- nardine, PTOP = 4-(5-p-tolyl-1,3, 4-oxadiazd-2-yl) pyridine), is synthesized and character...A new 1,3,4-oxadiazole-contanining rhenium(I) complex, with the formula [Re(CO)a(Bphen)(PTOP)], (Bphen = bathophe- nardine, PTOP = 4-(5-p-tolyl-1,3, 4-oxadiazd-2-yl) pyridine), is synthesized and characterized by elemental analysis, IR, 1H NMR, UV-vis and luminescence spectroscopy. The double-layer electroluminescence devices based on the Re(l) complex have been fabricated by spin-coating technique. The turn-on voltage, maximum efficiency, and brightness for green emission obtained from the devices are 9 V, 2.1 cd/A and 165 cd/m^2, respectively.展开更多
The influence of the delocalization probability on the mixing interaction between excited levels of Ce3+ and the conduction band of SrS was analysed. The observation of emission wave forms of SrSCe thin film electrolu...The influence of the delocalization probability on the mixing interaction between excited levels of Ce3+ and the conduction band of SrS was analysed. The observation of emission wave forms of SrSCe thin film electroluminescence showed that only leading edge emission peak was observed for one sample and the leading and trailing edge emission peaks were observed for another in a half period of sinusoid applied voltage. This difference is related to the influences of sulphur vacancies on the excitation and emission processes. The leading edge emssion is dominated by discrete luminescence caused by direct impact excitation and the trailing edge emission and a part of leading edge emission belong to recombination luminescence caused by impact ionization and delocalization.展开更多
A simplified n-ZnO/p-Si heterojunction has been prepared by growing n-type ZnO rods on p-type silicon wafer through the chemical wpour deposition method. The reflectance spectrum of the sample shows an independent abs...A simplified n-ZnO/p-Si heterojunction has been prepared by growing n-type ZnO rods on p-type silicon wafer through the chemical wpour deposition method. The reflectance spectrum of the sample shows an independent absorption peak at 384 nm, which may be originated from the bound states at the junction. In the photoluminescence spectrum a new emission band is shown at 393 nm, besides the bandedge emission at 380nm. The electroluminescence spectrum of the n-ZnO/p-Si heterojunction shows a stable yellow luminescence band centred at 560 nm, which can be attributed to the emission from trapped states. Another kind of discrete ZnO rod has also been prepared on such silicon wafer and is encapsulated with carbonated polystyrene for electroluminescence detection. This composite structure shows a weak ultraviolet electroluminescence band at 395 nm and a yellow electroluminescence band. These data prove that surface modification which blocks the transverse movement of carriers between neighbouring nanorods plays important roles in the ultraviolet emission of ZnO nanorods. These findings are vital for future display device design.展开更多
A GaN/Si nanoheterojunction is prepared through growing Ga N nanocrystallites(nc-GaN) on a silicon nanoporous pillar array(Si-NPA) by a chemical vapor deposition(CVD) technique at a relatively low temperature. T...A GaN/Si nanoheterojunction is prepared through growing Ga N nanocrystallites(nc-GaN) on a silicon nanoporous pillar array(Si-NPA) by a chemical vapor deposition(CVD) technique at a relatively low temperature. The average size of nc-Ga N is determined to be ~10 nm. The spectral measurements disclose that the photoluminescence(PL) from GaN/SiNPA is composed of an ultraviolet(UV) band and a broad band spanned from UV to red region, with the feature that the latter band is similar to that of electroluminescence(EL). The electron transition from the energy levels of conduction band and, or, shallow donors to that of deep acceptors of Ga N is indicated to be responsible for both the broad-band PL and the EL luminescence. A study of the I-V characteristic shows that at a low forward bias, the current across the heterojunction is contact-limited while at a high forward bias it is bulk-limited, which follows the thermionic emission model and space-charge-limited current(SCLC) model, respectively. The bandgap offset analysis indicates that the carrier transport is dominated by electron injection from n-GaN into the p-Si-NPA, and the EL starts to appear only when holes begin to be injected from Si-NPA into GaN with biases higher than a threshold voltage.展开更多
The electroluminescence of ZnS doped with terbium fluoride thin films prepared b y ra dio frequency magnetron sputtering method was reported. The characteristics of t h e ZnS∶TbF 3 thin film electroluminescence devi...The electroluminescence of ZnS doped with terbium fluoride thin films prepared b y ra dio frequency magnetron sputtering method was reported. The characteristics of t h e ZnS∶TbF 3 thin film electroluminescence devices, such as film characteristi cs of the ZnS∶Tb active layer, substrate temperatures during magnetron sputteri ng and Tb concentration of the active layer, were systematically investigated. The results show that annealing can evidently improve the luminescence performance of the luminescence device.展开更多
In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11...In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.展开更多
An n-ZnO:A1/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying be- havior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands ce...An n-ZnO:A1/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying be- havior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands centred at 450 nm-485 nm (blue emission) and 570 nm-640 nm (yellow emission). Light emission with a luminance of 15 cd/m2 is observed from the electroluminescent device at a forward applied voltage of 85 V, which is distinguished from white light by the naked eye.展开更多
A novel rare earth complex Tb(3 metho) 3phen was synthesized and characterized. The complex was doped into PVK to improve the conductivity and film forming property of Tb(3 metho) 3phen. A device with a structure...A novel rare earth complex Tb(3 metho) 3phen was synthesized and characterized. The complex was doped into PVK to improve the conductivity and film forming property of Tb(3 metho) 3phen. A device with a structure of ITO/PVK∶Tb(3 metho) 3phen /Al was fabricated to study the electroluminescent properties of Tb(3 metho) 3phen. And the optoluminescent and AFM properties of this device were also studied, which proved the existence of energy transfer from PVK to Tb(3 metho) 3phen. As a result, a pure green emission with sharp spectral band at 547.5 nm was observed.展开更多
By using scanning tunneling microscope induced luminescence(STML)technique,we investigate systematically the bias-polarity dependent electroluminescence behavior of a single platinum phthalocyanine(PtPc)molecule and t...By using scanning tunneling microscope induced luminescence(STML)technique,we investigate systematically the bias-polarity dependent electroluminescence behavior of a single platinum phthalocyanine(PtPc)molecule and the electron excitation mechanisms behind.The molecule is found to emit light at both bias polarities but with different emission energies.At negative excitation bias,only the fluorescence at 637 nm is observed,which originates from the LUMOtHOMO transition of the neutral PtPc molecule and exhibits stepwise-like increase in emission intensities over three different excitation-voltage regions.Strong fluorescence in region(I)is excited by the carrier injection mechanism with holes injected into the HOMO state first;moderate fluorescence in region(II)is excited by the inelastic electron scattering mechanism;and weak fluorescence in region(III)is associated with an up-conversion process and excited by a combined carrier injection and inelastic electron scattering mechanism involving a spintriplet relay state.At positive excitation bias,more-than-one emission peaks are observed and the excitation and emission mechanisms become complicated.The sharp moleculespecific emission peak at〜911 nm is attributed to the anionic emission of PtPc-originated from the LUMO+1 tLUMO transition,whose excitation is dominated by a carrier injection mechanism with electrons first injected into the LUMO+1 or higher-lying empty orbitals.展开更多
A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped dia...A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped diamond/indium tin oxide thin films. Effects of process parameters on morphologies and structures of the thin films are detected and analysed by scanning electron microscopy, Raman spectrometer and x-ray photoelectron spectrometer. A direct-current (DC) power supply is used to drive the electroluminescence device. The blue light emission with a luminance of 1.2 cd·m^-2 is observed from this double-doped diamond thin film electroluminescence device at an applied voltage of 105 V.展开更多
文摘A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer(MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs) using a radio frequency plasma deposition system. The source material of the DLC is n-butylamine. The devices consist of indium tin oxide (ITO)/MEH-PPV/DLC/Al. Electron injection properties are investigated through I-V characteristics,and the mechanism of electron injection enhancement due to a thin DLC layer has been studied. It is found that: (1) a DLC layer thinner than 1.0nm leads to a higher turn-on voltage and decreased electroluminescent (EL) efficiency; (2) a 5.0nm DLC layer significantly enhances the electron injection and results in the lowest turn-on voltage and the highest EL efficiency; (3) DLC layer that exceeds 5.0nm results in poor device performance;and(4) EL emission can hardly be detected when the layer exceeds 10.0nm. The properties of ITO/MEH-PPV/DLC/Al and ITO/MEH-PPV/LiF/Al are investigated comparatively.
文摘A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904059,41066001,61072131,61177096)Aeronautical Science Foundation of China (Grant No. 2010ZB56004)+3 种基金the Scientific Research Foundation of Jiangxi Provincial Department of Education,China (Grant No. GJJ11176)the Open Fund of the Key Laboratory of Nondestructive Testing(Ministry of Education,Nanchang Hangkong University) (Grant No. ZD201029005)the Natural Science Foundation of JiangxiProvince,China (Grant No. 2009GZW0024)the Graduate Innovation Base of Jiangxi Province,China
文摘At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence intensity has a power law dependence on the dc bias current. The photodiode ideality factor could be obtained by a fitting a relationship between the electroluminescence intensity and the bias current. The device defect levels will be easily determined according to the infrared image and the extracted ideality factor value. This work is of guiding significance for current solar cell testing and research.
文摘A new blue electroluminescent material, distyrylarylene(DSA) derivative, 4,4' bis[2,2 (1 naphthyl,phenyl)vinyl] 1,1' biphenyl(NPVBi) is designed and synthesized. The DSA derivative shows better thermal stability because of its high glass transition temperature. A blue organic light emitting diode(OLED) with the structure ITO/TPD/NPVBi/Alq/LiF/Al is studied. The electroluminescent(EL) spectrum of the OLED exhibits that light emission originates from NPVBi with a peak at 460 nm, its Commission Internationale de l'Eclairage(CIE) color coordinates are x=0.16, y=0.15, and showing independence of CIE color coordinates on current density. The new DSA derivative is expectable as a new candidate for blue light emitter in OLEDs.
基金This project was financially supported by the National Natural Science Foundation of China(Grant No.20102004).
文摘This paper describes the design, synthesis and characterization of a hydrogen-bonded molecular duplex with 1,8-naphthalimide fluorescent pendants. The two oligoamide molecular strands, with complementary hydrogen bond sequences of DDADAA and AADADD, can form an ultra stable self-assembly duplex. Its molecular structure was confu-med by ^1H NMR and ESI-MS, and its photoluminescence properties were determined. The resulting duplex exhibited a dramatically enhanced photoluminescence (PL) quantum efficiency of 63.7% compared to the corresponding 1,8-naphthalimide segment (32.4%), suggesting that the formation of the duplex with larger molecular weight could successfully inhibit the quenching of the fluorescent pendant. This novel duplex is a prospective candidate for new electroluminescent emitter.
基金Supported by the National Natural Science Foundation of China under Grant Nos.59973007 and 60077014。
文摘An organic electroluminescent (EL) device has been constructed with a double quantum-well structure consisting of N, N'-bis-(1-naphthl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) doped with 5,6,11,12-tetraphenylnaphthacene (rubrene) as a potential well and emitter, and undoped NPB as a barrier potential. The maximum ELefficiency and brightness reach 5.6cd/A and 40000cd/m^(2), respectively. Most importantly, with the increase of the drive voltage, the EL efficiency (cd/A) declines very slowly after reaching its maximum, almost independent of the drive voltage in a wide range from 5 to 13 V. This characteristic may be useful in the improvement of the lifetime of the device.
基金the National Natural Science Foundation of China,and the Natural Science Foundation of He'nan province.
文摘Blue-green electroluminescence has been observed in free-standing diamond films which were deposited by microwave plasma assisted CVD on silicon substrates.The electroluminescence device is driven by a 60 Hz power supply.The threshold voltage was about 112 V peak-to-peak.The electroluminescence spectrum at room temperature,showed a blue-green band with the peak centered at 485nm suggesting band A type emission.Electroluminescence was also observed at 77K.
文摘An Electroluminescent device with PVK film doped with Eu(TTA) 3 Phen and PBD was fabricated. The device structure of glass substrate/indium tin oxide/PPV/PVK∶ Eu(TTA) 3 Phen∶PBD/Alq 3/Al was employed. A sharply red electroluminescence with a maximum luminance of 56.8 cd/m 2 at 48 V was achieved.
基金This work was supported by National Natural Science Foundation of China (29972032) and Provincial Natural Science Foundation of Hunan (00JJY2043).
文摘A novel binuclear europium P-diketone complex with squaric acid ligand was synthesized for the first time. Its structure was elucidated by IR, UV, and Elemental Analysis. Red light emitting diode (LED) was fabricated by using the novel europium complex as an emitting layer, tris(8-quinolinolate) aluminum (III) (Alq(3)) as an electron-transporting layer, N, N'-diphenyl-N, N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole-transporting layer. A cell structure of indium-tin-oxide/TPD/Eu-complex/Alq(3)/Mg: Ag was employed. Red electroluminescence was observed at room temperature with dc bias voltage of 2 V in this cell. 2 Red emission peaks at about 613 nm with maximum luminance of over 106 cd/m(2). Compared with the EL luminance from those europium complexes reported before, one from the Eu-complex is best in the same cells.
基金supported by the National Natural Science Foundation of China(Grant Nos.61136003 and 61275041)the Guangxi Provincial Natural Science Foundation,China(Grant No.2012GXNSFBA053168)
文摘We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes(UV OLEDs) using different heterojunction structures.It is found that an energy barrier of over 0.3 eV between the emissive layer(EML) and adjacent transport layer facilitates exciplex formation.The electron blocking layer effectively confines electrons in the EML,which contributes to pure UV emission and enhances efficiency.The change in EML thickness generates tunable UV emission from 376 nm to 406 nm.In addition,the UV emission excites low-energy organic function layers and produces photoluminescent emission.In UV OLED,avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency.A maximum external quantum efficiency of 1.2%with a UV emission peak of 376 nm is realized.
文摘A new 1,3,4-oxadiazole-contanining rhenium(I) complex, with the formula [Re(CO)a(Bphen)(PTOP)], (Bphen = bathophe- nardine, PTOP = 4-(5-p-tolyl-1,3, 4-oxadiazd-2-yl) pyridine), is synthesized and characterized by elemental analysis, IR, 1H NMR, UV-vis and luminescence spectroscopy. The double-layer electroluminescence devices based on the Re(l) complex have been fabricated by spin-coating technique. The turn-on voltage, maximum efficiency, and brightness for green emission obtained from the devices are 9 V, 2.1 cd/A and 165 cd/m^2, respectively.
文摘The influence of the delocalization probability on the mixing interaction between excited levels of Ce3+ and the conduction band of SrS was analysed. The observation of emission wave forms of SrSCe thin film electroluminescence showed that only leading edge emission peak was observed for one sample and the leading and trailing edge emission peaks were observed for another in a half period of sinusoid applied voltage. This difference is related to the influences of sulphur vacancies on the excitation and emission processes. The leading edge emssion is dominated by discrete luminescence caused by direct impact excitation and the trailing edge emission and a part of leading edge emission belong to recombination luminescence caused by impact ionization and delocalization.
基金Project supported by the National Natural Science Foundation of China (Grant No 20173073), National 973 Project (Grant No 2002CB713802), Nano- and Bio-device Key Project of CAS, 985 Project of Hunan University.
文摘A simplified n-ZnO/p-Si heterojunction has been prepared by growing n-type ZnO rods on p-type silicon wafer through the chemical wpour deposition method. The reflectance spectrum of the sample shows an independent absorption peak at 384 nm, which may be originated from the bound states at the junction. In the photoluminescence spectrum a new emission band is shown at 393 nm, besides the bandedge emission at 380nm. The electroluminescence spectrum of the n-ZnO/p-Si heterojunction shows a stable yellow luminescence band centred at 560 nm, which can be attributed to the emission from trapped states. Another kind of discrete ZnO rod has also been prepared on such silicon wafer and is encapsulated with carbonated polystyrene for electroluminescence detection. This composite structure shows a weak ultraviolet electroluminescence band at 395 nm and a yellow electroluminescence band. These data prove that surface modification which blocks the transverse movement of carriers between neighbouring nanorods plays important roles in the ultraviolet emission of ZnO nanorods. These findings are vital for future display device design.
基金Project supported by the National Natural Science Foundation of China(Grant No.61176044)
文摘A GaN/Si nanoheterojunction is prepared through growing Ga N nanocrystallites(nc-GaN) on a silicon nanoporous pillar array(Si-NPA) by a chemical vapor deposition(CVD) technique at a relatively low temperature. The average size of nc-Ga N is determined to be ~10 nm. The spectral measurements disclose that the photoluminescence(PL) from GaN/SiNPA is composed of an ultraviolet(UV) band and a broad band spanned from UV to red region, with the feature that the latter band is similar to that of electroluminescence(EL). The electron transition from the energy levels of conduction band and, or, shallow donors to that of deep acceptors of Ga N is indicated to be responsible for both the broad-band PL and the EL luminescence. A study of the I-V characteristic shows that at a low forward bias, the current across the heterojunction is contact-limited while at a high forward bias it is bulk-limited, which follows the thermionic emission model and space-charge-limited current(SCLC) model, respectively. The bandgap offset analysis indicates that the carrier transport is dominated by electron injection from n-GaN into the p-Si-NPA, and the EL starts to appear only when holes begin to be injected from Si-NPA into GaN with biases higher than a threshold voltage.
文摘The electroluminescence of ZnS doped with terbium fluoride thin films prepared b y ra dio frequency magnetron sputtering method was reported. The characteristics of t h e ZnS∶TbF 3 thin film electroluminescence devices, such as film characteristi cs of the ZnS∶Tb active layer, substrate temperatures during magnetron sputteri ng and Tb concentration of the active layer, were systematically investigated. The results show that annealing can evidently improve the luminescence performance of the luminescence device.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400803 and 2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,and 61574134)。
文摘In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well(MQW) structures,the electroluminescence(EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection,and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point.The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.
基金supported by the Shanghai Human Resources and Social Security Bureau,China(Grant No.2009023)
文摘An n-ZnO:A1/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying be- havior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands centred at 450 nm-485 nm (blue emission) and 570 nm-640 nm (yellow emission). Light emission with a luminance of 15 cd/m2 is observed from the electroluminescent device at a forward applied voltage of 85 V, which is distinguished from white light by the naked eye.
文摘A novel rare earth complex Tb(3 metho) 3phen was synthesized and characterized. The complex was doped into PVK to improve the conductivity and film forming property of Tb(3 metho) 3phen. A device with a structure of ITO/PVK∶Tb(3 metho) 3phen /Al was fabricated to study the electroluminescent properties of Tb(3 metho) 3phen. And the optoluminescent and AFM properties of this device were also studied, which proved the existence of energy transfer from PVK to Tb(3 metho) 3phen. As a result, a pure green emission with sharp spectral band at 547.5 nm was observed.
基金This work is supported by the National Key R&D Program of China(No.2016YFA0200600 and No.2017YFA0303500)the National Natural Science Foundation of China,the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)Anhui Initiative in Quantum Information Technologies.
文摘By using scanning tunneling microscope induced luminescence(STML)technique,we investigate systematically the bias-polarity dependent electroluminescence behavior of a single platinum phthalocyanine(PtPc)molecule and the electron excitation mechanisms behind.The molecule is found to emit light at both bias polarities but with different emission energies.At negative excitation bias,only the fluorescence at 637 nm is observed,which originates from the LUMOtHOMO transition of the neutral PtPc molecule and exhibits stepwise-like increase in emission intensities over three different excitation-voltage regions.Strong fluorescence in region(I)is excited by the carrier injection mechanism with holes injected into the HOMO state first;moderate fluorescence in region(II)is excited by the inelastic electron scattering mechanism;and weak fluorescence in region(III)is associated with an up-conversion process and excited by a combined carrier injection and inelastic electron scattering mechanism involving a spintriplet relay state.At positive excitation bias,more-than-one emission peaks are observed and the excitation and emission mechanisms become complicated.The sharp moleculespecific emission peak at〜911 nm is attributed to the anionic emission of PtPc-originated from the LUMO+1 tLUMO transition,whose excitation is dominated by a carrier injection mechanism with electrons first injected into the LUMO+1 or higher-lying empty orbitals.
基金supported by the Shanghai Education Committee of China (Grant No.07ZZ95)the Shanghai Human Resources and Social Security Bureau (Grant No.2009023)
文摘A new electroluminescence device is fabricated by microwave plasma chemical vapour deposition system and electron beam vapour deposition system. It is comprised of highly doped silicon/diamond/boron/nitrogen-doped diamond/indium tin oxide thin films. Effects of process parameters on morphologies and structures of the thin films are detected and analysed by scanning electron microscopy, Raman spectrometer and x-ray photoelectron spectrometer. A direct-current (DC) power supply is used to drive the electroluminescence device. The blue light emission with a luminance of 1.2 cd·m^-2 is observed from this double-doped diamond thin film electroluminescence device at an applied voltage of 105 V.