Significantly enhanced electroluminescence performance and stability of all-inorganic perovskite light-emitting devices(PeLEDs) have been achieved by adding triton X-100 into the perovskite precursors.The small perovs...Significantly enhanced electroluminescence performance and stability of all-inorganic perovskite light-emitting devices(PeLEDs) have been achieved by adding triton X-100 into the perovskite precursors.The small perovskite grains arranged tightly and formed large grains as the triton X-100 were introduced.Thus the nonradiative defects originated from Pb atoms at the grain boundaries were highly passivated by triton X-100 and resulted in the promotion of PeLED performance,including a turn-on voltage of 3.2 V,a brightness of 63500 cd/m^(2),a current efficiency of 17.4 cd/A,and a prolonged lifetime of 2 h in air.展开更多
Four novel polymers, poly(3,6-9-decyl-carbazole-alt-1,3-benzene) (PB13CZ), poly(3,6-9-decyl-carbazole-alt- bis(4-phenyl) (phenyl) phosphine oxide) (PTPPO38CZ), poly(3,6-9-decyl-carbazole-alt-2,4-phenyl(d...Four novel polymers, poly(3,6-9-decyl-carbazole-alt-1,3-benzene) (PB13CZ), poly(3,6-9-decyl-carbazole-alt- bis(4-phenyl) (phenyl) phosphine oxide) (PTPPO38CZ), poly(3,6-9-decyl-carbazole-alt-2,4-phenyl(diphenyl) phosphine oxide) (PTPPO13CZ) and poly(3,6-9-decyl-carbazole-alt-bis(3-phenyl) (phenyl) phosphine oxide) (PTTPO27CZ) were synthesized, and their thermal, photophysical properties and device applications were further investigated to correlate the chemical structures with the photoelectric performance of bipolar host materials for phosphorescent organic light emitting diodes. All of them show high thermal stability as revealed by their high glass transition temperatures and thermal decomposition temperatures at 5% weight loss. These polymers have wide band gaps and relatively high triplet energy levels. As a result, the spin coating method was used to prepare the green phosphorescent organic light emitting diodes with polymers PTPPO38CZ, PTPPO13CZ and PTTPO27CZ as the typical host materials. The green device of polymer PTPPO38CZ as host material shows electroluminescent performance with maximum current efficiency of 2.16 cd.A-1, maximum external quantum efficiency of 0.7%, maximum brightness of 1475 cd.m-2 and reduced efficiency roll-off of 7.14% at 600 cd.m-2, which are much better than those of the same devices hosted by polymers PTTPO27CZ and PTPPO13CZ.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0305900 and 2016YFA0300404)the National Natural Science Foundation of China(Grant Nos.11874172,11374120,11634004,and 51320105007)the Science and Technology Innovative Research Project of Jilin University,China(Grant No.2017TD-01)。
文摘Significantly enhanced electroluminescence performance and stability of all-inorganic perovskite light-emitting devices(PeLEDs) have been achieved by adding triton X-100 into the perovskite precursors.The small perovskite grains arranged tightly and formed large grains as the triton X-100 were introduced.Thus the nonradiative defects originated from Pb atoms at the grain boundaries were highly passivated by triton X-100 and resulted in the promotion of PeLED performance,including a turn-on voltage of 3.2 V,a brightness of 63500 cd/m^(2),a current efficiency of 17.4 cd/A,and a prolonged lifetime of 2 h in air.
基金financially supported by the Major Research Program from the State Ministry of Science and Technology(No.2012CB933301)the National Natural Science Foundation of China(No.21574068)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.YX03001)Natural Science Foundation of Jiangsu Province(No.BM2012010)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.15KJB150022)Jiangsu Government Scholarship for Overseas Studies
文摘Four novel polymers, poly(3,6-9-decyl-carbazole-alt-1,3-benzene) (PB13CZ), poly(3,6-9-decyl-carbazole-alt- bis(4-phenyl) (phenyl) phosphine oxide) (PTPPO38CZ), poly(3,6-9-decyl-carbazole-alt-2,4-phenyl(diphenyl) phosphine oxide) (PTPPO13CZ) and poly(3,6-9-decyl-carbazole-alt-bis(3-phenyl) (phenyl) phosphine oxide) (PTTPO27CZ) were synthesized, and their thermal, photophysical properties and device applications were further investigated to correlate the chemical structures with the photoelectric performance of bipolar host materials for phosphorescent organic light emitting diodes. All of them show high thermal stability as revealed by their high glass transition temperatures and thermal decomposition temperatures at 5% weight loss. These polymers have wide band gaps and relatively high triplet energy levels. As a result, the spin coating method was used to prepare the green phosphorescent organic light emitting diodes with polymers PTPPO38CZ, PTPPO13CZ and PTTPO27CZ as the typical host materials. The green device of polymer PTPPO38CZ as host material shows electroluminescent performance with maximum current efficiency of 2.16 cd.A-1, maximum external quantum efficiency of 0.7%, maximum brightness of 1475 cd.m-2 and reduced efficiency roll-off of 7.14% at 600 cd.m-2, which are much better than those of the same devices hosted by polymers PTTPO27CZ and PTPPO13CZ.