期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Advancements,strategies,and prospects of solid oxide electrolysis cells(SOECs):Towards enhanced performance and large-scale sustainable hydrogen production
1
作者 Amina Lahrichi Youness El Issmaeli +1 位作者 Shankara S.Kalanur Bruno G.Pollet 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期688-715,共28页
Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scal... Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts. 展开更多
关键词 Solid oxide electrolysis cells Proton-SOECs Oxygen-SoECs Hybrid-SOECs Intermediate-high temperature electrolysers Hydrogenproduction
下载PDF
Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell
2
作者 Chao Liu Zhen Geng +6 位作者 Xukang Wang Wendong Liu Yuwei Wang Qihan Xia Wenbo Li Liming Jin Cunman Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期348-369,I0009,共23页
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t... Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 HYDROGEN Water electrolysis Anion exchange membrane electrolysis cell
下载PDF
Exsolved materials for CO_(2)reduction in high-temperature electrolysis cells 被引量:1
3
作者 Min Xu Ran Cao +5 位作者 Han Qin Nuoxi Zhang Wenle Yan Liming Liu John T.S.Irvine Di Chen 《Materials Reports(Energy)》 2023年第2期62-81,I0003,共21页
Electrochemical reduction of CO_(2)into valuable fuels and chemicals has become a contemporary research area,where the heterogeneous catalyst plays a critical role.Metal nanoparticles supported on oxides performing as... Electrochemical reduction of CO_(2)into valuable fuels and chemicals has become a contemporary research area,where the heterogeneous catalyst plays a critical role.Metal nanoparticles supported on oxides performing as active sites of electrochemical reactions have been the focus of intensive investigation.Here,we review the CO_(2)reduction with active materials prepared by exsolution.The fundamental of exsolution was summarized in terms of mechanism and models,materials,and driven forces.The advances in the exsolved materials used in hightemperature CO_(2)electrolysis were catalogued into tailored interfaces,synergistic effects on alloy particles,phase transition,reversibility and electrochemical switching. 展开更多
关键词 CO_(2)reduction EXSOLUTION Solid oxide electrolysis cells CATALYSTS
下载PDF
A robust fluorine-containing ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells
4
作者 Shaowei Zhang Chengyue Yang +2 位作者 Yunan Jiang Ping Li Changrong Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期300-309,I0008,共11页
Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stabi... Stro ntium-doped lanthanum ferrite(LSF)is a potential ceramic cathode for direct CO_(2) electrolysis in solid oxide electrolysis cells(SOECs),but its application is limited by insufficient catalytic activity and stability in CO_(2)-containing atmospheres.Herein,a novel strategy is proposed to enhance the electrolytic performance as well as chemical stability,achieved by doping F into the O-site of the perovskite LSF.Doping F does not change the phase structure but reduces the cell volume and improves the chemical stability in a CO_(2)-rich atmosphere.Importantly,F doping favors oxygen vacancy formation,increases oxygen vacancy concentration,and enhances the CO_(2) adsorption capability.Meanwhile,doping with F greatly improves the kinetics of the CO_(2) reduction reaction.For example,kchem increases by 78%from3.49×10^(-4) cm s^(-1) to 6.24×10^(-4) cm s^(-1),and Dchem doubles from 4.68×10^(-5) cm^(2) s^(-1) to 9.45×10^(-5)cm^(2) s^(-1).Consequently,doping F significantly increases the electrochemical performance,such as reducing R_(p) by 52.2%from 0.226Ωcm^(2) to 0.108Ωcm^(2) at 800℃.As a result,the single cell with the Fcontaining cathode exhibits an extremely high current density of 2.58 A cm^(-2) at 800℃and 1.5 V,as well as excellent durability over 200 h for direct CO_(2) electrolysis in SOECs. 展开更多
关键词 Solid oxide electrolysis cell CO_(2)electrolysis Ceramic cathode F doping Strontium-doped lanthanum ferrite
下载PDF
Study on Biological Pathway of Carbon Dioxide Methanation Based on Microbial Electrolysis Cell
5
作者 Guanwen Ding Qifen Li +2 位作者 Liting Zhang Yuanbo Hou Xiaoxiao Yan 《Journal of Renewable Materials》 SCIE EI 2023年第1期197-207,共11页
Realization of CO_(2) resource utilization is the main development direction of CO_(2) reduction.The CO_(2) methana-tion technology based on microbial electrolysis cell(MEC)has the characteristics of ambient temperatu... Realization of CO_(2) resource utilization is the main development direction of CO_(2) reduction.The CO_(2) methana-tion technology based on microbial electrolysis cell(MEC)has the characteristics of ambient temperature and pressure,green and low-carbon,which meets the need of low-carbon energy transition.However,the lack of the system such as the change of applied voltage and the reactor amplification will affect the methane production efficiency.In this research,the efficiency of methane production with different applied voltages and different types of reactors was carried out.The results were concluded that the maximum methane production rate of the H-type two-chamber microbial electrolysis cells(MECs)at an applied voltage of 0.8 V was obtained to be 1.15 times higher than that of 0.5 V;under the same conditions of inoculated sludge,the reactor was amplified 2.5 times and the cumulative amount of methane production was 1.04 times higher than the original.This research can provide a theoretical basis and technical reference for the early industrial application of CO_(2) methanation tech-nology based on MEC. 展开更多
关键词 CO_(2)methanation microbial electrolysis cell(MEC) microbial electrolytic cell enlargement external voltage
下载PDF
High-temperature electrocatalysis and key materials in solid oxide electrolysis cells 被引量:11
6
作者 Lingting Ye Kui Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期736-745,共10页
Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inve... Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective. 展开更多
关键词 ELECTROCATALYSIS Solid oxide electrolysis cell CATHODE ANODE ELECTROLYTE
下载PDF
Enhancing cathode performance for CO2 electrolysis with Ce0.9M0.1O2-δ(M=Fe, Co, Ni) catalysts in solid oxide electrolysis cell 被引量:1
7
作者 Zhidong Huang Zhe Zhao +3 位作者 Huiying Qi Xiuling Wang Baofeng Tu Mojie Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期46-51,I0003,共7页
Electrochemical conversion with solid oxide electrolysis cells is a promising technology for CO2 utilization and simultaneously store renewable energy.In this work,Ce0.9M0.1O2-δ(CeM,M=Fe,Co,Ni)catalysts are infiltrat... Electrochemical conversion with solid oxide electrolysis cells is a promising technology for CO2 utilization and simultaneously store renewable energy.In this work,Ce0.9M0.1O2-δ(CeM,M=Fe,Co,Ni)catalysts are infiltrated into La0.6Sr0.4Cr0.5Fe0.5O3-δ-Gd0.2Ce0.8O2-δ(LSCr Fe-GDC)cathode to enhance the electrochemical performance for CO2 electrolysis.CeCo-LSCrFe-GDC cell obtains the best performance with a current density of 0.652 A cm^-2,followed by CeFe-LSCrFe-GDC and CeNi-LSCrFe-GDC cells with the value of 0.603 and 0.535 A cm^-2,respectively,about 2.44,2.26 and 2.01 times higher than that of the LSCrFe-GDC cell at1.5 V and 800℃.Electrochemical impedance spectra combined with distributions of relaxed times analysis shows that both CO2 adsorption process and the dissociation of CO2 at triple phase boundaries are accelerated by Ce M catalysts,while the latter is the key rate-determining step. 展开更多
关键词 Solid oxide electrolysis cell Carbon dioxide conversion Doped ceria Distribution of relaxation times ELECTROREDUCTION
下载PDF
Fuzzy logic controller implementation on a microbial electrolysis cell for biohydrogen production and storage
8
作者 Gabriel Khew Mun Hong Mohd Azlan Hussain Ahmad Khairi Abdul Wahab 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期149-159,共11页
This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of... This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot. 展开更多
关键词 Fuzzy logic control Process control NONLINEAR Microbial electrolysis cell Renewable energy HYDROGEN
下载PDF
Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion
9
作者 Xinyu Yan Bobo Wang +6 位作者 Hongxia Liang Jie Yang Jie Zhao Fabrice Ndayisenga Hongxun Zhang Zhisheng Yu Zhi Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期239-245,共7页
The low quality and yield of methane severely hinder the industrial application of straw biogas fermentation, and no effective solution has been found so far. In this study, a novel method was developed when a microbi... The low quality and yield of methane severely hinder the industrial application of straw biogas fermentation, and no effective solution has been found so far. In this study, a novel method was developed when a microbial electrolysis cell(MEC) was coupled with normal anaerobic fermentation to enhance methane yield and purity. The fermentation process achieved a methane purity of more than 85%, which is considerably higher than that of previously published reports. With microbial stimulation and an electric current, the degradation of fibers has been greatly enhanced. The MEC system substantially improved the yield and purity of biogas, bringing a new path to the synthesis of methane by carbon dioxide and hydrogen ions in solution under electron irradiation. Electrochemical index analysis showed extra methane synthesis, due to the external circuit electron transfer. The results of the gas chromatography and solid degradation rate showed that the carbon source of extra methane was CO_(2) produced during normal fermentation and additional volatile solid degradation. These results show that the MEC considerably enhanced the quality and yield of methane in the straw fermentation process, providing insights into normal anaerobic fermentation. 展开更多
关键词 Microbial electrolysis cell(MEC) METHANE STRAW FERMENTATION BIOENERGY
下载PDF
Co/Fe oxide and Ce_(0.8)Gd_(0.2)O_(2-δ) composite interlayer for solid oxide electrolysis cell
10
作者 Jingbo Yan Lei Shang +2 位作者 Zhe Zhao Dingrong Ou Mojie Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第5期840-844,共5页
A composite interlayer comprised of gadolinia doped ceria(GDC) and Co/Fe oxide was prepared and investigated for solid oxide electrolysis cell with yttrium stabilized zirconia(YSZ) electrolyte and LaSrCoFeO(LSCF... A composite interlayer comprised of gadolinia doped ceria(GDC) and Co/Fe oxide was prepared and investigated for solid oxide electrolysis cell with yttrium stabilized zirconia(YSZ) electrolyte and LaSrCoFeO(LSCF) anode. The interlayer was constructed of a base layer of GDC and a top layer of discrete CoO/FeCoOparticles. The presence of the GDC layer drastically alleviated the undesired reactions between LSCF and YSZ, and the presence of Co/Fe oxide led to further performance improvement. At 800 °C and 45% humidity, the cell with 70% Co/Fe-GDC interlayer achieved 0.98 A/cmat 1.18 V, 14% higher than the cell without Co/Fe oxide. Electrochemical impedance spectroscopy(EIS) revealed that with higher Co/Fe content, both the ohmic resistance and the polarization resistance of the cell were reduced. It is suggested that Co/Fe oxide can react with the Sr species segregated from LSCF and Sr(Co,Fe)O, a compound with high catalytic activity and electronic conductivity. The Sr-capturing ability of Co/Fe oxide in combination with the Sr-blocking ability of GDC layer can effectively suppress the undesired reaction between LSCF and YSZ, and consequently improve the cell performance. 展开更多
关键词 Solid oxide electrolysis cell Ceria interlayer Cobalt oxide Sr segregation
下载PDF
Degradation Pathway of Benzothiazole and Microbial Community Structure in Microbial Electrolysis Cells
11
作者 Xianshu Liu Jie Ding +4 位作者 Nanqi Ren Shuangyang Zhao Luyan Zhang Yan Li Qingyue Tong 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第6期1-7,共7页
In this study, benzothiazole was entirely mineralized by an up-flow internal circulation microbial electrolysis reactor. The bioelectrochemical system was operated at ambient temperature under continuous-flow mode. Th... In this study, benzothiazole was entirely mineralized by an up-flow internal circulation microbial electrolysis reactor. The bioelectrochemical system was operated at ambient temperature under continuous-flow mode. The analysis of metabolite which was extracted by HPLC-MS from the bioreactor indicated that benzothiazole derivative ( BTH ) was firstly converted into 2-hydroxybenzothiazole in the microbial electrolysis cell (MEC) and then mineralized within three steps, i.e., the fracture of thiazole-ring through a series of oxidation and hydrolysis, the deamination and hydroxylation of 2-aminobenzenesulfonic acid, and the mineralization of various carboxylic acids to CO2 and H2O. Bacterial community analysis indicated that the applied electric field could selectively enrich certain species and the dominate bacteria on the electrodes belonged to Proteobacteria, Bacteroidetes, and Firmicutes. Results show that MEC can improve the degradation efficiency of BTH in wastewater, enable the microbiological reactor to satisfy the requirements of high loading rate, thereby fulfilling the scale-up of whole process in the future. 展开更多
关键词 BENZOTHIAZOLE microbial electrolysis cell intermediate product biodegradation pathway high-throughput sequencing
下载PDF
Efficient degradation of aqueous dichloromethane by an enhanced microbial electrolysis cell:Degradation kinetics,microbial community and metabolic mechanisms
12
作者 Meng Wu Di Zhao +4 位作者 Bing Gu ZiruWang Jun Hu Zhiliang Yu Jianming Yu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期150-159,共10页
Dichloromethane(DCM)has been listed as a toxic and harmful water pollutant,and its re moval needs attention.Microbial electrolysis cells(MECs)are viewed as a promising alterna tive for pollutant removal,which can be s... Dichloromethane(DCM)has been listed as a toxic and harmful water pollutant,and its re moval needs attention.Microbial electrolysis cells(MECs)are viewed as a promising alterna tive for pollutant removal,which can be strengthened from two aspects:microbial inocula tion and acclimation.In this study,the MEC for DCM degradation was inoculated with the ac tive sludge enhanced by Methylobacterium rhodesianum H13(strain H13)and then acclimated in the form of a microbial fuel cell(MFC).Both the introduction of strain H13 and the initi ation in MFC form significantly promoted DCM degradation.The degradation kinetics were fitted by the Haldane model,with V_(max),K_(h),K_(i)and v_(max)values of 103.2 mg/L/hr,97.8 mg/L268.3 mg/L and 44.7 mg/L/hr/cm^(2),respectively.The cyclic voltammogram implies that DCM redox reactions became easier with the setup of MEC,and the electrochemical impedance spectrogram shows that the acclimated and enriched microbes reduced the charge transfe resistance from the electrode to the electrolyte.In the biofilm,the dominant genera shifted from Geobacter to Hyphomicrobium in acclimation stages.Moreover,Methylobacterium played an increasingly important role.DCM metabolism mainly occurred through the hydrolytic glutathione S-transferase pathway,given that the gene dcmA was identified rather than the dhlA and P450/MO.The exogenous electrons facilitated the reduction of GSSG,directly o indirectly accelerating the GSH-catalyzed dehalogenation.This study provides support fo the construction of an efficient and stable MEC for DCM removal in water environment. 展开更多
关键词 DICHLOROMETHANE Microbial electrolysis cells Metabolic pathways Electron transfer Degradation kinetics
原文传递
Advances in component and operation optimization of solid oxide electrolysis cell
13
作者 Xiaoxin Zhang Bo Liu +5 位作者 Yanling Yang Jianhui Li Jian Li Yingru Zhao Lichao Jia Yifei Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期155-164,共10页
Considering the earth powered by intermittent renewable energy in the coming future,solid oxide electrolysis cell(SOEC)will play an indispensable role in efficient energy conversion and storage on demand.The thermolyt... Considering the earth powered by intermittent renewable energy in the coming future,solid oxide electrolysis cell(SOEC)will play an indispensable role in efficient energy conversion and storage on demand.The thermolytic and kinetic merits grant SOEC a bright potential to be directly integrated with electrical grid and downstream chemical synthesis process.Meanwhile,the scientific community are still endeavoring to pursue the SOEC assembled with better materials and operated at a more energy-efficient way.In this review article,at cell level,we focus on the recent development of electrolyte,cathode,anode and buffer layer materials for both steam and CO_(2)electrolysis.On the other hand,we also discuss the next generation SOEC operated with the assistant of other fuels to further reduce the energy consumption and enhance the productivity of the electrolyzer.And stack level,the sealant,interconnect and stack operation strategies are collectively covered.Finally,the challenges and future research direction in SOECs are included. 展开更多
关键词 Solid oxide electrolysis cell Fuel assistant STACK Operation condition ANODE CATHODE
原文传递
Parametric Study of Operating Conditions on Performances of a Solid Oxide Electrolysis Cell
14
作者 CHEN Hanming WANG Jingyi XU Xinhai 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期1973-1988,共16页
The operating conditions greatly affect the electrolysis performance and temperature distribution of solid oxide electrolysis cells(SOECs).However,the temperature distribution in a cell is hard to determine by experim... The operating conditions greatly affect the electrolysis performance and temperature distribution of solid oxide electrolysis cells(SOECs).However,the temperature distribution in a cell is hard to determine by experiments due to the limitations of in-situ measurement methods.In this study,an electrochemical-flow-thermal coupling numerical cell model is established and verified by both current-voltage curves and electrochemical impedance spectroscopy(EIS)results.The electrolysis performance and temperature distribution under different working conditions are numerically analyzed,including operating temperature,steam and hydrogen partial pressures in the fuel gas,inlet flow rate and inlet temperature of fuel gas.The results show that the electrolysis performance improves with increasing operating temperature.Increasing steam partial pressure improves electrolysis performance and temperature distribution uniformity,but decreases steam conversion rate.An inappropriately low hydrogen partial pressure reduces the diffusion ability of fuel gas mixture and increases concentration impedance.Although increasing the flow rate of fuel gas improves electrolysis performance,it also reduces temperature distribution uniformity.A lower airflow rate benefits temperature distribution uniformity.The inlet temperature of fuel gas has little influence on electrolysis performance.In order to obtain a more uniform temperature distribution,it is more important to preheat the air than the fuel gas. 展开更多
关键词 solid oxide electrolysis cell electrolysis performance temperature distribution operating conditions EIS(electrochemical impedance spectroscopy)
原文传递
Materials of solid oxide electrolysis cells for H_(2)O and CO_(2) electrolysis:A review
15
作者 Peng Qiu Cheng Li +3 位作者 Bo Liu Dong Yan Jian Li Lichao Jia 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第8期1463-1510,共48页
Reliable and economical energy storage technologies are urgently required to ensure sustainable energy supply.Hydrogen(H_(2))is an energy carrier that can be produced environmentfriendly by renewable power to split wa... Reliable and economical energy storage technologies are urgently required to ensure sustainable energy supply.Hydrogen(H_(2))is an energy carrier that can be produced environmentfriendly by renewable power to split water(H_(2)O)via electrochemical cells.By this way,electric energy is stored as chemical energy of H_(2),and the storage can be large-scale and economical.Among the electrochemical technologies for H_(2)O electrolysis,solid oxide electrolysis cells(SOECs)operated at temperatures above 500℃have the benefits of high energy conversion efficiency and economic feasibility.In addition to the H_(2)O electrolysis,SOECs can also be employed for CO_(2) electrolysis and H2O–CO_(2) co-electrolysis to produce value-added chemicals of great economic and environmental significance.However,the SOEC technology is not yet fully ready for commercial deployment because of material limitations of the key components,such as electrolytes,air electrodes,and fuel electrodes.As is well known,the reactions in SOEC are,in principle,inverse to the reactions in solid oxide fuel cells(SOFCs).Component materials of SOECs are currently adopted from SOFC materials.However,their performance stability issues are evident,and need to be overcome by materials development in line with the unique requirements of the SOEC materials.Key topics discussed in this review include SOEC critical materials and their optimization,material degradation and its safeguards,future research directions,and commercialization challenges,from both traditional oxygen ion(O_(2)−)-conducting SOEC(O-SOEC)and proton(H^(+))-conducting SOEC(H-SOEC)perspectives.It is worth to believe that H_(2)O or/and CO_(2) electrolysis by SOECs provides a viable solution for future energy storage and conversion. 展开更多
关键词 solid oxide electrolysis cells(SOECs) water(H_(2)O)electrolysis CO_(2)electrolysis electrolytes ELECTRODE
原文传递
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
16
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition 被引量:13
17
作者 Weichao Yue Xiaofang Chen +2 位作者 Weihua Gui Yongfang Xie Hongliang Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2017年第3期414-428,共15页
Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accur... Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accurate RCA of abnormal aluminum electrolysis cell condition is the precondition of improving current efficiency. RCA of abnormal condition is a complex work of multi-source knowledge fusion, which is difficult to ensure the RCA accuracy of abnormal cell condition because of dwindling and frequent flow of experienced technicians. In view of this, a method based on Fuzzy- Bayesian network to construct multi-source knowledge solidification reasoning model is proposed. The method can effectively fuse and solidify the knowledge, which is used to analyze the cause of abnormal condition by technicians providing a clear and intuitive framework to this complex task, and also achieve the result of root cause automatically. The proposed method was verified under 20 sets of abnormal cell conditions, and implements root cause analysis by finding the abnormal state of root node, which has a maximum posterior probability by Bayesian diagnosis reasoning. The accuracy of the test results is up to 95%, which shows that the knowledge reasoning feasibility for RCA of aluminum electrolysis cell. 展开更多
关键词 abnormal aluminum electrolysis cell condi- tion Fuzzy-Bayesian network multi-source knowledge solidification and reasoning root cause analysis
原文传递
Degradation of solid oxide electrolysis cells: Phenomena,mechanisms, and emerging mitigation strategies——A review 被引量:7
18
作者 Yi Wang Wenyuan Li +2 位作者 Liang Ma Wei Li Xingbo Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第20期35-55,共21页
Solid oxide electrolysis cell(SOEC) is a promising electrochemical device with high efficiency for energy storage and conversion.However,the degradation of SOEC is a significant barrier to commercial viability.In this... Solid oxide electrolysis cell(SOEC) is a promising electrochemical device with high efficiency for energy storage and conversion.However,the degradation of SOEC is a significant barrier to commercial viability.In this review paper,the typical degradation phenomena of SOEC are summarized,with great attention into the anodes/oxygen electrodes,including the commonly used and newly developed anode materials.Meanwhile,mechanistic investigations on the electrode/electrolyte interfaces are provided to unveil how the intrinsic factor,oxygen partial pressure pO2,and the electrochemical operation conditions,affect the interracial stability of SOEC.At last,this paper also presents some emerging mitigation strategies to circumvent long-term degradation,which include novel infiltration method,development of new anode materials and engineering of the microstructure. 展开更多
关键词 Solid oxide electrolysis cell DEGRADATION Electrode/electrolyte interface MITIGATION Strategy
原文传递
Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell 被引量:3
19
作者 WANG ZhiMing XU Chao +2 位作者 WANG XueYe LIAO ZhiRong DU XiaoZe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第7期1555-1566,共12页
A three-dimensional, non-isothermal, two-phase model for a PEM water electrolysis cell(PEMEC) is established in this study.An effective connection between two-phase transport and performance in the PEMECs is built thr... A three-dimensional, non-isothermal, two-phase model for a PEM water electrolysis cell(PEMEC) is established in this study.An effective connection between two-phase transport and performance in the PEMECs is built through coupling the liquid water saturation and temperature in the charge conservation equation. The distributions of liquid water and temperature with different operating(voltage, temperature, inlet velocity) and physical(contact angle, and porosity of anode gas diffusion layer) parameters are examined and discussed in detail. The results show that the water and temperature distributions, which are affected by the operating and physical parameters, have a combined effect on the cell performance. The effects of various parameters on the PEMEC are of interaction and restricted mutually. As the voltage increases, the priority factor caused by the change of inlet water velocity changes from the liquid water saturation increase to the temperature drop in the anode catalyst layer. While the priority influence factor caused by the contact angle and porosity of anode gas diffusion layer is the liquid water saturation. Decreasing the contact angle or/and increasing the porosity can improve the PEMEC performance especially at the high voltage. The results can provide a better understanding of the effect of heat and mass transfer and the foundation for optimization design. 展开更多
关键词 proton exchange membrane electrolysis cell two-phase model liquid water saturation flow rate temperature distribution
原文传递
Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis cells 被引量:5
20
作者 Ze Sun Chenglin Liu +2 位作者 Guimin Lu Xingfu Song Jianguo Yu 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2015年第4期522-531,共10页
Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and use... Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and used to calculate electric field at the steady state through the finite element analysis. Based on the simulation of the electric field, the operational and structural parameters, such as the current intensity, anode thickness, cathode thickness, and anode-cathode distance (ACD), were investigated to obtain the minimum cell voltage. The optimization is to obtain the minimum resistance voltage which has a significant effect on the energy consumption in the magnesium electrolysis process. The results indicate that the effect of the current intensity on the voltage could be ignored and the effect of the ACD is obvious. Moreover, there is a linear decrease between the voltage and the thicknesses of the anode and cathode; and the anodecathode working height also has a significant effect on the voltage. 展开更多
关键词 magnesium electrolysis cell electric field finite element method
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部