期刊文献+
共找到440篇文章
< 1 2 22 >
每页显示 20 50 100
Degradation of 4-CP in an internal electrolysis system 被引量:3
1
作者 BIANWen-juan SHENXue-you LEILe-cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第2期234-237,共4页
The characteristic and mechanism of parachlorophenol(4-CP) degradation in an internal electrolysis system were investigated. The degradation rate of 4-CP was higher in acid solution than that of in neutral or alkaline... The characteristic and mechanism of parachlorophenol(4-CP) degradation in an internal electrolysis system were investigated. The degradation rate of 4-CP was higher in acid solution than that of in neutral or alkaline solution. Addition of activated carbon could make 4-CP easier be degraded by the surface contact catalysis. The dissolved oxygen in solution could take part in the electrode reaction and intensify the degradation of 4-CP. By the analysis of intermediates of degradation of 4-CP, it could be conferred that 4-CP was broken through the bond beside hydroxy firstly, then the bond beside chloride was broken and the chloride was dechlorinated simultaneously. Most intermediate products were glycerine, ethane diacid and acetic acid, while very few 1,4-butanedial and alcohols were found. 展开更多
关键词 internal electrolysis DEGRADATION WASTEWATER
下载PDF
Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system
2
作者 Yang Zhou Lice Yu +2 位作者 Jinfa Chang Ligang Feng Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期758-770,共13页
Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts ... Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts for membrane electrode fabrication are required to drive the electrolysis reactions.Herein,the efficient catalytic promotion effect of a novel catalyst promoter,CoTe,on Pt is demonstrated for low carbon alcohol fuels of methanol and ethanol electrolysis for hydrogen generation.Experimental and density functional theory calculation results indicate that the optimized electronic structure of Pt–CoTe/C resulting from the synergetic effect between Pt and CoTe further regulates the adsorption energies of CO and H*that enhances the catalytic ability for methanol and ethanol electrolysis.Moreover,the good water activation ability of CoTe and the strong electronic effect of Pt and CoTe increased the tolerance ability to the poisoning species as demonstrated by the CO-stripping technique.The high catalytic kinetics and stability,as well as the promotion effect,were also carefully discussed.Specifically,71.9%and 75.5%of the initial peak current density was maintained after 1000 CV cycles in acid electrolyte for methanol and ethanol oxidation;and a low overpotential of 30 and 35 mV was required to drive the hydrogen evolution reaction in methanol and ethanol solution at the current density of 10 mA cm^(-2).In the two-electrode system for alcohol fuels electrolysis,using the optimal Pt–CoTe/C catalyst as bi-functional catalysts,the cell potential of 0.66 V(0.67 V)was required to achieve 10 mA cm^(-2) for methanol(ethanol)electrolysis,much smaller than that of water electrolysis(1.76 V).The current study offers a novel platform for hydrogen generation via low carbon alcohol fuel electrolysis,and the result is helpful to the catalysis mechanism understanding of Pt assisted by the novel promoter. 展开更多
关键词 Methanol electrolysis Ethanol electrolysis Cobalt telluride Pt-based electrocatalyst Hydrogen evolution reaction
下载PDF
Linear paired electrolysis of furfural to furoic acid at both anode and cathode in a multiple redox mediated system
3
作者 Xinxin Li Linchuan Cong +4 位作者 Haibo Lin Fangbing Liu Xiangxue Fu Hai-Chao Xu Nan Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期104-113,共10页
Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we r... Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects. 展开更多
关键词 Multiple redox mediated system Linear paired electrolysis FURFURAL Furoic acid
下载PDF
Novel interface engineering of LDH-based materials on Mg alloy for efficient photocatalytic systems considering the geometrical linearity of condensed phosphates 被引量:1
4
作者 Mosab Kaseem Ananda Repycha Safira Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期267-280,共14页
This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'g... This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications. 展开更多
关键词 Plasma electrolysis Layered Double Hydroxide Condensed phosphates Adsorption capacity Photocatalytic efficiency
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:1
5
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 Alkaline water electrolysis HYDROGEN ELECTROCATALYSTS Ni_(3)S_(2)
下载PDF
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
6
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water electrolysis Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques
下载PDF
Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell
7
作者 Chao Liu Zhen Geng +6 位作者 Xukang Wang Wendong Liu Yuwei Wang Qihan Xia Wenbo Li Liming Jin Cunman Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期348-369,I0009,共23页
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t... Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 HYDROGEN Water electrolysis Anion exchange membrane electrolysis cell
下载PDF
Covalently Bonded Ni Sites in Black Phosphorene with Electron Redistribution for Efficient Metal‑Lightweighted Water Electrolysis
8
作者 Wenfang Zhai Ya Chen +5 位作者 Yaoda Liu Yuanyuan Ma Paranthaman Vijayakumar Yuanbin Qin Yongquan Qu Zhengfei Dai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期233-245,共13页
The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers... The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers the high capability of black phosphorene(BP)with hydrogen and oxygen evolution reaction(HER/OER)bifunctionality.Through a facile in situ electro-exfoliation route,the ionized Ni sites are covalently functionalized in BP nanosheets with electron redistribution and controllable metal contents.It is found that the as-fabricated Ni-BP electrocatalysts can drive the water splitting with much enhanced HER and OER activities.In 1.0 M KOH electrolyte,the optimized 1.5 wt%Nifunctionalized BP nanosheets have readily achieved low overpotentials of 136 mV for HER and 230 mV for OER at 10 mA cm^(−2).Moreover,the covalently bonding between Ni and P has also strengthened the catalytic stability of the Ni-functionalized BP electrocatalyst,stably delivering the overall water splitting for 50 h at 20 mA cm^(−2).Theoretical calculations have revealed that Ni–P covalent binding can regulate the electronic structure and optimize the reaction energy barrier to improve the catalytic activity effectively.This work confirms that Ni-functionalized BP is a suitable candidate for electrocatalytic overall water splitting,and provides effective strategies for constructing metal-lightweighted economic electrocatalysts. 展开更多
关键词 Black phosphorus Water electrolysis ELECTROCATALYST Electron redistribution Covalent functionalization
下载PDF
A novel multi-channel porous structure facilitating mass transport towards highly efficient alkaline water electrolysis
9
作者 Xinge Jiang Vasileios Kyriakou +6 位作者 Chen Song Xianbin Wang Sophie Costil Chunming Deng Taikai Liu Tao Jiang Hanlin Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期511-518,I0013,共9页
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w... An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications. 展开更多
关键词 Alkaline water electrolysis Mass transport Bubble dynamics Innovative convection mode Multi-channel porous structure
下载PDF
A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis
10
作者 Junting Dong Chang Yu +5 位作者 Hui Wang Lin Chen Hongling Huang Yingnan Han Qianbing Wei Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期486-495,I0011,共11页
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c... Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique. 展开更多
关键词 Nickel-iron hydroxide electrocatalysts Highly selective seawater electrolysis Weak nucleophilicity Oxygen evolution reaction Hydrogen
下载PDF
Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis
11
作者 Wenxing Cao Jiancheng Shu +5 位作者 Jiaming Chen Zihan Li Songshan Zhou Shushu Liao Mengjun Chen Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期531-538,共8页
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi... Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER. 展开更多
关键词 iron-rich electrolytic manganese residue slurry electrolysis high-purity iron powder leaching efficiency current efficiency
下载PDF
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
12
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
Asymmetric configuration activating lattice oxygen via weakening d-p orbital hybridization for efficient C/N separation in urea overall electrolysis
13
作者 Chongchong Liu Peifang Wang +3 位作者 Bin Hu Xiaoli Liu Rong Huang Gang Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期233-239,共7页
Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and comp... Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity. 展开更多
关键词 Lattice oxygen Urea oxidation reaction Overall electrolysis Products selectivity
下载PDF
Manipulating d-d orbital hybridization induced by Mo-doped Co_(9)S_(8) nanorod arrays for high-efficiency water electrolysis
14
作者 Xue Zhou Jing Li +8 位作者 Guangyao Zhou Weiran Huang Yucan Zhang Jun Yang Huan Pang Mingyi Zhang Dongmei Sun Yawen Tang Lin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期592-600,I0015,共10页
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ... Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems. 展开更多
关键词 d-d orbital hybridization Transition metal sulfides Nanorods arrays Water electrolysis
下载PDF
Towards high-performance and robust anion exchange membranes(AEMs)for water electrolysis:Super-acid-catalyzed synthesis of AEMs
15
作者 Geun Woong Ryoo Sun Hwa Park +3 位作者 Ki Chang Kwon Jong Hun Kang Ho Won Jang Min Sang Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期478-510,I0012,共34页
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro... The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications. 展开更多
关键词 Green hydrogen production Water electrolysis Anion exchange membrane water electrolyzer(AEMWE) Anion exchange membranes(AEMs) Super-acid-catalyzed condensation(SACC)
下载PDF
Preparation of Mg-Yb alloy film by electrolysis in the molten LiCl-KCl-YbCl_3 system at low temperature 被引量:10
16
作者 陈野 叶克 张密林 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期128-133,共6页
The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such... The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu... 展开更多
关键词 LiCl-KCl eutectic molten salt Mg-Yb alloy films electrolysis low temperature rare earths
下载PDF
PREPARATION OF Al-Sc ALLOY IN CHLORIDE SYSTEM WITH MOLTEN SALT ELECTROLYSIS 被引量:3
17
作者 Tian Yanwen, Sun Benliang and Zhai Yuchun School of Materials & Metallurgy, Northeastern University, Shenyang 110006, P.R.China 《中国有色金属学会会刊:英文版》 CSCD 1998年第4期95-100,共6页
INTRODUCTIONScandiumposesesexcelentphysicochemicalproperties.WhenalitleofScisaddedintoAlaloy,thestrengthand... INTRODUCTIONScandiumposesesexcelentphysicochemicalproperties.WhenalitleofScisaddedintoAlaloy,thestrengthandhardnesofAlaloyca... 展开更多
关键词 Al Sc ALLOY NaCl KCl(equimolar) ScCl 3 system MOLTEN SALT electrolysis
下载PDF
LOW TEMPERATURE ALUMINUM FLOATING ELECTROLYSIS IN HEAVY ELECTROLYTE Na_3AlF_6-AlF_3-BaC1_2-NaCl BATH SYSTEM 被引量:4
18
作者 H.M. Lu and K.M. Fang Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China Z.X. Qiu Department of Nonferrous Metallurgy, Northeastern University, Shenyang 110006, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第4期949-954,共6页
Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The exper... Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising. 展开更多
关键词 low temperature aluminum floating electrolysis Na_3AlF_6- AlF_3BaC1_2-NaCl bath system current efficiency physico-chemical property
下载PDF
Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran 被引量:2
19
作者 Mostafa REZAEI Ali MOSTAFAEIPOUR +1 位作者 Mojtaba QOLIPOUR Mozhgan MOMENI 《Frontiers in Energy》 SCIE CSCD 2019年第3期539-550,共12页
Due to acute problems caused by fossil fuels that threaten the environment, conducting research on other types of energy carriers that are clean and renewable is of great importance. Since in the past few years hydrog... Due to acute problems caused by fossil fuels that threaten the environment, conducting research on other types of energy carriers that are clean and renewable is of great importance. Since in the past few years hydrogen has been introduced as the future fuel, the aim of this study is to evaluate wind and solar energy potentials in prone areas of Iran by the Weibull distribution function (WDF) and the Angstrom-Prescott (AP) equation for hydrogen production. To this end, the meteorological data of solar radiation and wind speed recorded at 10 m height in the time interval of 3 h in a five-year period have been used. The findings indicate that Manjil and Zahedan with yearly wind and solar energy densities of 6004 (kWh/m2) and 2247 0cWh/m2), respectively, have the greatest amount of energy among the other cities. After examining three different types of commercial wind turbines and photovoltaic (PV) systems, it becomes clear that by utilizing one set of Gamesa G47 turbine, 91 kg/d of hydrogen, which provides energy for 91 car/week, can be produced in Manjil and will save about 1347 L of gasoline in the week. Besides, by installing one thousand sets of X21-345 PV systems in Zahedan, 20 kg/d of hydrogen, enough for 20 cars per week, can be generated and 296 L of gasoline can be saved. Finally, the RETScreen software is used to calculate the annual CO2 emission reduction after replacing gasoline with the produced hydrogen. 展开更多
关键词 WIND ENERGY solar ENERGY water electrolysis HYDROGEN production Weibull distribution function (WDF) Angstrom丒Prescott (AP) equation
原文传递
Measurement on Physicochemical Properties ofNaCl-KCl-ScCl_3 System for Manufacture of Al-Sc Alloy by Molten Salt Electrolysis 被引量:1
20
作者 Yanwen TIAN Benliang SUN and Yuchun ZHAI(Materials and Metallurgy School, Northeastern University, Shenyang 110006, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第2期155-158,共4页
The physicochemical properties of the system, such as density, surface tension, specific conductance and melting point were measured. The results were discussed.
关键词 KCl Sc Measurement on Physicochemical Properties ofNaCl-KCl-ScCl3 system for Manufacture of Al-Sc Alloy by Molten Salt electrolysis Al
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部