The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such...The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...展开更多
The behavior of Cu-Ni-Ag-Al alloy used as anode for aluminum electrolysis was directly visualized in a two-compartment see-through cell during electrolysis, and its performances were tested at 850 ℃ in acidic electro...The behavior of Cu-Ni-Ag-Al alloy used as anode for aluminum electrolysis was directly visualized in a two-compartment see-through cell during electrolysis, and its performances were tested at 850 ℃ in acidic electrolyte molten salts consisting of 39.3%NaF-43.7%AlF3-8%NaCl-5%CaF2-4%Al2O3 for 40 h in a laboratory cell. The results show that nascent oxygen oxidizes the anodic surface to form oxide film at the beginning of electrolysis. X-ray diffraction analysis of alloy surface show that the oxide film on the anodic surface consists of CuO, NiO, Al2O3, CuAl2O4 and NiAl2O4. However, SEM image shows the oxide film is porous, loose and easy to fall into electrolyte and to contaminate aluminum. The corrosion mechanism of metal anodes was analyzed.展开更多
In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ...In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.展开更多
Homogeneous NaBH_(4)-reduced Co_(O)_(4) thin film electrodes with enhanced oxygen evolution electrocatalysis were obtained via a controlled-synthesis route.Firstly CoOx colloids were synthesized via ethylene glycol so...Homogeneous NaBH_(4)-reduced Co_(O)_(4) thin film electrodes with enhanced oxygen evolution electrocatalysis were obtained via a controlled-synthesis route.Firstly CoOx colloids were synthesized via ethylene glycol solvothermal method and cast on conductive glass substrates.The oxygen evolution reaction(OER) electrocatalysis of these asprepared CO_(3)O_(4) thin films were then significantly enhanced via a simple surface reduction by NaBH_(4) solution.The OER catalytic performance of the NaBH_(4)-reduced thin films was strongly dependent on the NaBH_(4) concentration.The use of NaBH_(4)-reduced thin film electrodes for OER in alkaline solution supported higher current density and consequently negative shifts of the onset potential compared to that of the pristine.The optimal B_(12.5,20)-CO_(3)O_(4) thin films exhibited excellent OER catalytic performances:At the current density of 10 mA·cm^(-2),a low overpotential of 365 mV and a small Tafel slope of 59.0 mV·dec^(-1) were observed.In addition,these B_(12.5,20)-CO_(3)O_(4) thin film electrodes possessed good stability that can well recover its OER performance in a 24-h chronoamperometric stability test.展开更多
This paper describes effects of 40 kHz ultrasound on the oxide films of stainless steel in sulphate electrolytes so as to determine the transmitted power and to characterize mass transfer and peak current density on t...This paper describes effects of 40 kHz ultrasound on the oxide films of stainless steel in sulphate electrolytes so as to determine the transmitted power and to characterize mass transfer and peak current density on the electrode surface. Emphasis was mainly laid on electrochemical oxidations and peeling mechanism of oxide films in sonicated sulphate solutions (0.5 and 1.0 mol/L). Polarization voltammetry, current response traces and SEM analysis were carded out in order to provide full information as to oxide films surface. Results shows that the rate of electrochemical oxidation, the shape of polarization curves and the surface micrographs in sonicated sulphate electrolytes are different from those obtained without introduction of ultrasound. It is concluded that ultrasound can change the electro-chemical behavior of oxide films by its cavitaion effects, which would produce transient mechanical impulsive force and enhance electrochemical reactions.展开更多
Topochemical ion-exchange reactions between solid micro- and nanostructured metal chalcogenides and aqueous salt solutions are generally used for formation of composite structures based on initial metal chalcogenides ...Topochemical ion-exchange reactions between solid micro- and nanostructured metal chalcogenides and aqueous salt solutions are generally used for formation of composite structures based on initial metal chalcogenides and products of their ion-exchange transformation. However, ion exchange has promises as a route to obtaining both composites and solid solutions based on the initial and the end chalcogenide phases. With the help of the ion-exchange technique, single-phase films of Phi xSnxSe substitutional solid solutions with a tin content up to -2 at.%, which are promising for mid- and long-wavelength infrared radiation (IR) optoelectronics, have been obtained at the interface between PbSe poly- crystalline thin films and SnCl2 aqueous solutions containing sodium citrate. It has been shown that the pH value and temperature of the reaction system play an important role in the ion-exchange process. Incubation of lead selenide (PbSe) films in a tin(II) salt aqueous solution also leads to their modification with oxygen-containing tin compounds to a depth of-3 nm. Differences in the film structure, such as changes in the coherent scattering region sizes and orientation of crystallites along the [220] direction, which arise during the contact with citrate-containing SnCl2 solutions, have also been revealed. For the first time, an idea of the existence of a relatively wide reaction zone of an intragranular topochemical ion-exchange reaction in an aqueous solution, within which substitutional solid solutions can form in micro- and nanostructured systems, has been set forth.展开更多
基金supported by 863 Project of Ministry of Science and Technology of China (2006AA03Z510)the National Natural Science Foundation of China (50871033)+1 种基金the Scientific Technology Project of Heilongjiang Province (GC06A212)the fund from Harbin Municipal Science & Technology Bureau (2006PFXXG006)
文摘The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...
文摘The behavior of Cu-Ni-Ag-Al alloy used as anode for aluminum electrolysis was directly visualized in a two-compartment see-through cell during electrolysis, and its performances were tested at 850 ℃ in acidic electrolyte molten salts consisting of 39.3%NaF-43.7%AlF3-8%NaCl-5%CaF2-4%Al2O3 for 40 h in a laboratory cell. The results show that nascent oxygen oxidizes the anodic surface to form oxide film at the beginning of electrolysis. X-ray diffraction analysis of alloy surface show that the oxide film on the anodic surface consists of CuO, NiO, Al2O3, CuAl2O4 and NiAl2O4. However, SEM image shows the oxide film is porous, loose and easy to fall into electrolyte and to contaminate aluminum. The corrosion mechanism of metal anodes was analyzed.
基金Project(51241001) supported by the National Natural Science Foundation of ChinaProject(ZR2011EMM004) supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(TS20110828) supported by Taishan Scholarship Project of Shandong Province,ChinaProject(2014TDJH104) supported by SDUST Research Fund,Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources of Shandong Province,China
文摘In situ growth of nano-sized layered double hydroxides (LDH) conversion film on AZ31 alloy was synthesized by a urea hydrolysis method. The formation mechanism of the film was proposed. Firstly, the dissolved Mg2+ ions deposited into a precursor film consisted of MgCO3 and Mgs(CO3)4(OH)2·4H2O; secondly, the precursor translated into the crystalline Mg(OH)2 in alkaline conditions; finally, the Mg2+ ions in Mg(OH)z were replaced by A13+ ions, Mg(OH)2 translated into the more stable LDH structure, simultaneously, the OH- ions in the interlayer were exchanged by CO32-, thus led to the formation of the LDH (Mg6Alz(OHh6CO3·4H2O) film. The results indicated that the LDH film characterized by interlocking plate-like nanostructures and ion-exchange ability significantly improved the corrosion resistance of the AZ31 Mg alloy.
基金supported by National Key Research and Development Program of China (2016YFB0600503, 2016YFC0400503, 2016YFC0400506)。
文摘Homogeneous NaBH_(4)-reduced Co_(O)_(4) thin film electrodes with enhanced oxygen evolution electrocatalysis were obtained via a controlled-synthesis route.Firstly CoOx colloids were synthesized via ethylene glycol solvothermal method and cast on conductive glass substrates.The oxygen evolution reaction(OER) electrocatalysis of these asprepared CO_(3)O_(4) thin films were then significantly enhanced via a simple surface reduction by NaBH_(4) solution.The OER catalytic performance of the NaBH_(4)-reduced thin films was strongly dependent on the NaBH_(4) concentration.The use of NaBH_(4)-reduced thin film electrodes for OER in alkaline solution supported higher current density and consequently negative shifts of the onset potential compared to that of the pristine.The optimal B_(12.5,20)-CO_(3)O_(4) thin films exhibited excellent OER catalytic performances:At the current density of 10 mA·cm^(-2),a low overpotential of 365 mV and a small Tafel slope of 59.0 mV·dec^(-1) were observed.In addition,these B_(12.5,20)-CO_(3)O_(4) thin film electrodes possessed good stability that can well recover its OER performance in a 24-h chronoamperometric stability test.
文摘This paper describes effects of 40 kHz ultrasound on the oxide films of stainless steel in sulphate electrolytes so as to determine the transmitted power and to characterize mass transfer and peak current density on the electrode surface. Emphasis was mainly laid on electrochemical oxidations and peeling mechanism of oxide films in sonicated sulphate solutions (0.5 and 1.0 mol/L). Polarization voltammetry, current response traces and SEM analysis were carded out in order to provide full information as to oxide films surface. Results shows that the rate of electrochemical oxidation, the shape of polarization curves and the surface micrographs in sonicated sulphate electrolytes are different from those obtained without introduction of ultrasound. It is concluded that ultrasound can change the electro-chemical behavior of oxide films by its cavitaion effects, which would produce transient mechanical impulsive force and enhance electrochemical reactions.
基金supported by Act 211 of the Government of the Russian Federation No.02.A03.21.0006the Ministry of Education and Science of Russia under government task No.4.1270.2014/K
文摘Topochemical ion-exchange reactions between solid micro- and nanostructured metal chalcogenides and aqueous salt solutions are generally used for formation of composite structures based on initial metal chalcogenides and products of their ion-exchange transformation. However, ion exchange has promises as a route to obtaining both composites and solid solutions based on the initial and the end chalcogenide phases. With the help of the ion-exchange technique, single-phase films of Phi xSnxSe substitutional solid solutions with a tin content up to -2 at.%, which are promising for mid- and long-wavelength infrared radiation (IR) optoelectronics, have been obtained at the interface between PbSe poly- crystalline thin films and SnCl2 aqueous solutions containing sodium citrate. It has been shown that the pH value and temperature of the reaction system play an important role in the ion-exchange process. Incubation of lead selenide (PbSe) films in a tin(II) salt aqueous solution also leads to their modification with oxygen-containing tin compounds to a depth of-3 nm. Differences in the film structure, such as changes in the coherent scattering region sizes and orientation of crystallites along the [220] direction, which arise during the contact with citrate-containing SnCl2 solutions, have also been revealed. For the first time, an idea of the existence of a relatively wide reaction zone of an intragranular topochemical ion-exchange reaction in an aqueous solution, within which substitutional solid solutions can form in micro- and nanostructured systems, has been set forth.