The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration an...The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration and aluminum electrolyte temperature was explored through the modeling of heat and mass transfer processes in industrial pre-baked aluminum reduction cells. A coupled heat/mass-balance model was derived theoretically from the mass and energy balance of an electrolysis cell, and then was simplified properly into a practical expression. The model demonstrates that if environmental temperature and Al2O3 concentration keep constant, the excess AlF3 concentration decreases with the aluminum electrolyte temperature linearly and its decrease rate is dependent on the heat transfer property of aluminum electrolyte, side wall and cell shell. Secondly, experiments were conducted on site with two industrial cells in an aluminum electrolysis plant. Excess AlF3 concentration and aluminum electrolyte temperature were obtained simultaneously together with other parameters such as Al2O3, CaF2, MgF2 and LiF concentrations. Results show that the maximum absolute error between the tested value and the calculated value of excess AlF3 concentration using the proposed model is less than 2%. This reveals that the coupled heat/mass-balance model can appropriately characterize the correlation between excess AlF3 concentration and aluminum electrolyte temperature with good accuracy and practicability.展开更多
Altered blood chemistry, acid-base and electrolyte are suggested determinants of sleep disturbance, with frequent arousal at high altitude even in well and long-trained altitude marathon runners. In this sample of exp...Altered blood chemistry, acid-base and electrolyte are suggested determinants of sleep disturbance, with frequent arousal at high altitude even in well and long-trained altitude marathon runners. In this sample of experienced altitude marathon runners with maximal aerobic power at sea level of 61.4 ± 2.7 ml/kg-1·min-1 we found that pO2 and percent of oxygen saturation (%SO2) were lower at2050 mand3480 mthan at sea level;pO2 was higher after 38 - 41 hours than after 30 - 31 hours of acclimatization at3480 m(P 2 decreased (P 2 and (P 2 at a sleeping altitude of3480 mwas lower (P Simple regression analysis disclosed a significant correlation between the changes in TST and the percent of REM sleep and the changes in %SpaO2 recorded during sleep (P 2 at higher altitude and the percent of W and of TST (P 2, tCO2 and [HCO3-] correlated negatively and significantly with the percent of REM sleep changes at high altitude (P 2 and pH and correlated negatively with the changes in %SO2, pCO2, tCO2, and [HCO3-] (P ++] and [BE] and negatively with the changes in buffered bases [BB] and [BEeffective] (P 2 and significantly and negatively with the changes in [K+] (P 2, tCO2, [HCO3-] and [K+]展开更多
A degree centigrade fall or rise in body temperature of broiler chickens is sufficient to reduce performance, alter sound physiological state and divert nutritional metabolism in quest for ensuring thermal balance. Th...A degree centigrade fall or rise in body temperature of broiler chickens is sufficient to reduce performance, alter sound physiological state and divert nutritional metabolism in quest for ensuring thermal balance. Thermoregulatory mechanisms of newly hatched chicks are poorly developed, and fluctuations in brooding temperature coupled with severe environmental temperatures in the tropics could threaten the survivability, production and economic integrity of fast-growing strains of broilers. However, information on the effect of sharp fluctuations in body temperature on nutrient intake and European production index (EPI) of broilers fed dietary electrolytes is scanty and thus investigated. Using a total of 300, one-day-old unsexed broiler chicks (Arbor Acre) that were randomly allotted to six dietary treatments (T1-210, T2-240, T3270, T4-300, T5-330 and T6-360 mEq/kg electrolyte balance), data on performance characteristics and their correlations with body temperature and EPI at prestarter, starter and finisher phases were determined using standard procedures. Data were analysed using descriptive statistics and ANOVA at α = 0.05. At prestarter phase, feed intake (FI) had a strong and positive relationship with protein intake (r = 1.00;p < 0.01), EPI (r = 0.96;p < 0.01) and potassium (K) intake (r = 0.66;p < 0.01), but was negatively correlated with temperature change (r = ?0.39;p < 0.05). However, FI was not significantly correlated with body weight (BW), body weight gain (BWG), sodium (Na) and water intake. At starter phase, EPI was positively correlated to K intake (r = 0.38;p < 0.05), but not Na and chloride (Cl) intake. European production index of starter chicks could be enhanced by increasing the level of K intake through dietary supplementation up to 1.02%. Weight gain was adversely affected by sharp changes in temperature at finisher phase. Increase in water intake may not be a remedial tool in lowering sharp fluctuations in body temperature. However, sharp fluctuation in body temperature of broilers was reduced with DEB of 330, 270 and 240 mEq/kg at prestarter, starter and finisher phases, respectively.展开更多
Arterial blood gases and electrolytes were determined in 159 cases of adult respirato-ry distress syndrome(ARDS).It was found that disordered acid-base balance was a commonfinding in various kinds of ARDS.In mild ARDS...Arterial blood gases and electrolytes were determined in 159 cases of adult respirato-ry distress syndrome(ARDS).It was found that disordered acid-base balance was a commonfinding in various kinds of ARDS.In mild ARDS,respiratory alkalosis and the combination ofrespiratory alkalosis plus metabolic alkalosis or metabolic acidosis were usually encounted,whilein moderate and severe cases of ARDS,triple acid-base disorders,respiratory acidosis,and thecombination of respiratory acidosis plus metabolic acidosis were commonly seen.Severe alkalosiswas one of the factors to result in death.展开更多
A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (eth...A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH_2C1_2 The ionicconductivity, electrochemical stability, interfacial characteristic and thermal behavior of thecomposite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linearsweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transitiontemperature acts as a function of salt concentration, which increases with the LiClO_4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relationbetween the filled fumed SiO_2 and the lithium salt in the composite polymer electrolyte. Over thesalt concentration range and the measured temperature, the maximum ionic conductivity of thecomposite polymer electrolyte (10^(-4.41) S/cm) appeared at EO/Li=25 (mole ratio) and 30 deg C, andthe beginning oxidative degradation potential versus Li beyond 5 V.展开更多
A complex example of electrolytic redox system involving 47 species, 3 electron-active elements and five (3 am-phiprotic + 2 aprotic) co-solvents, is presented. Mixed solvates of the species thus formed are admitted i...A complex example of electrolytic redox system involving 47 species, 3 electron-active elements and five (3 am-phiprotic + 2 aprotic) co-solvents, is presented. Mixed solvates of the species thus formed are admitted in the system considered. It is proved that the Generalized Electron Balance (GEB) in its simplest form obtained according to the Approach II to GEB is identical with the one obtained for aqueous media and binary-solvent system, and is equivalent to the Approach I to GEB.展开更多
Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value adde...Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value added chemicals for decades.In the meantime,1-butanol and a series of value added products have been selectively generated through C–C bond coupling.In this mini-review,we focus on the recent advances in selective C–C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide,mixed metal oxide,hydroxyapatite and zeolite confined transition metal oxide catalysts.Among them,Pd-MgAlO_x and Sr-based hydroxyapatite exhibit>70%1-butanol selectivity,while Zn——xZr_yO_z and Ta-Si BEA zeolite achieve>80%of isobutene and butadiene selectivity respectively.The mechanism and reaction pathway of C–C bond formation in each reaction system are described in detail.The correlation between C–C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.展开更多
A simple general relation P = Q + R + 1 between the number P of kinds of species, the number Q of charge and elemental/core balances and the number R of independent equilibrium constants is deduced, and its validity i...A simple general relation P = Q + R + 1 between the number P of kinds of species, the number Q of charge and elemental/core balances and the number R of independent equilibrium constants is deduced, and its validity is confirmed for non-redox and redox electrolytic systems, of different degree of complexity.展开更多
基金Project(50376076) supported by the National Natural Science Foundation of China
文摘The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration and aluminum electrolyte temperature was explored through the modeling of heat and mass transfer processes in industrial pre-baked aluminum reduction cells. A coupled heat/mass-balance model was derived theoretically from the mass and energy balance of an electrolysis cell, and then was simplified properly into a practical expression. The model demonstrates that if environmental temperature and Al2O3 concentration keep constant, the excess AlF3 concentration decreases with the aluminum electrolyte temperature linearly and its decrease rate is dependent on the heat transfer property of aluminum electrolyte, side wall and cell shell. Secondly, experiments were conducted on site with two industrial cells in an aluminum electrolysis plant. Excess AlF3 concentration and aluminum electrolyte temperature were obtained simultaneously together with other parameters such as Al2O3, CaF2, MgF2 and LiF concentrations. Results show that the maximum absolute error between the tested value and the calculated value of excess AlF3 concentration using the proposed model is less than 2%. This reveals that the coupled heat/mass-balance model can appropriately characterize the correlation between excess AlF3 concentration and aluminum electrolyte temperature with good accuracy and practicability.
文摘Altered blood chemistry, acid-base and electrolyte are suggested determinants of sleep disturbance, with frequent arousal at high altitude even in well and long-trained altitude marathon runners. In this sample of experienced altitude marathon runners with maximal aerobic power at sea level of 61.4 ± 2.7 ml/kg-1·min-1 we found that pO2 and percent of oxygen saturation (%SO2) were lower at2050 mand3480 mthan at sea level;pO2 was higher after 38 - 41 hours than after 30 - 31 hours of acclimatization at3480 m(P 2 decreased (P 2 and (P 2 at a sleeping altitude of3480 mwas lower (P Simple regression analysis disclosed a significant correlation between the changes in TST and the percent of REM sleep and the changes in %SpaO2 recorded during sleep (P 2 at higher altitude and the percent of W and of TST (P 2, tCO2 and [HCO3-] correlated negatively and significantly with the percent of REM sleep changes at high altitude (P 2 and pH and correlated negatively with the changes in %SO2, pCO2, tCO2, and [HCO3-] (P ++] and [BE] and negatively with the changes in buffered bases [BB] and [BEeffective] (P 2 and significantly and negatively with the changes in [K+] (P 2, tCO2, [HCO3-] and [K+]
文摘A degree centigrade fall or rise in body temperature of broiler chickens is sufficient to reduce performance, alter sound physiological state and divert nutritional metabolism in quest for ensuring thermal balance. Thermoregulatory mechanisms of newly hatched chicks are poorly developed, and fluctuations in brooding temperature coupled with severe environmental temperatures in the tropics could threaten the survivability, production and economic integrity of fast-growing strains of broilers. However, information on the effect of sharp fluctuations in body temperature on nutrient intake and European production index (EPI) of broilers fed dietary electrolytes is scanty and thus investigated. Using a total of 300, one-day-old unsexed broiler chicks (Arbor Acre) that were randomly allotted to six dietary treatments (T1-210, T2-240, T3270, T4-300, T5-330 and T6-360 mEq/kg electrolyte balance), data on performance characteristics and their correlations with body temperature and EPI at prestarter, starter and finisher phases were determined using standard procedures. Data were analysed using descriptive statistics and ANOVA at α = 0.05. At prestarter phase, feed intake (FI) had a strong and positive relationship with protein intake (r = 1.00;p < 0.01), EPI (r = 0.96;p < 0.01) and potassium (K) intake (r = 0.66;p < 0.01), but was negatively correlated with temperature change (r = ?0.39;p < 0.05). However, FI was not significantly correlated with body weight (BW), body weight gain (BWG), sodium (Na) and water intake. At starter phase, EPI was positively correlated to K intake (r = 0.38;p < 0.05), but not Na and chloride (Cl) intake. European production index of starter chicks could be enhanced by increasing the level of K intake through dietary supplementation up to 1.02%. Weight gain was adversely affected by sharp changes in temperature at finisher phase. Increase in water intake may not be a remedial tool in lowering sharp fluctuations in body temperature. However, sharp fluctuation in body temperature of broilers was reduced with DEB of 330, 270 and 240 mEq/kg at prestarter, starter and finisher phases, respectively.
文摘Arterial blood gases and electrolytes were determined in 159 cases of adult respirato-ry distress syndrome(ARDS).It was found that disordered acid-base balance was a commonfinding in various kinds of ARDS.In mild ARDS,respiratory alkalosis and the combination ofrespiratory alkalosis plus metabolic alkalosis or metabolic acidosis were usually encounted,whilein moderate and severe cases of ARDS,triple acid-base disorders,respiratory acidosis,and thecombination of respiratory acidosis plus metabolic acidosis were commonly seen.Severe alkalosiswas one of the factors to result in death.
文摘A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH_2C1_2 The ionicconductivity, electrochemical stability, interfacial characteristic and thermal behavior of thecomposite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linearsweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transitiontemperature acts as a function of salt concentration, which increases with the LiClO_4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relationbetween the filled fumed SiO_2 and the lithium salt in the composite polymer electrolyte. Over thesalt concentration range and the measured temperature, the maximum ionic conductivity of thecomposite polymer electrolyte (10^(-4.41) S/cm) appeared at EO/Li=25 (mole ratio) and 30 deg C, andthe beginning oxidative degradation potential versus Li beyond 5 V.
文摘A complex example of electrolytic redox system involving 47 species, 3 electron-active elements and five (3 am-phiprotic + 2 aprotic) co-solvents, is presented. Mixed solvates of the species thus formed are admitted in the system considered. It is proved that the Generalized Electron Balance (GEB) in its simplest form obtained according to the Approach II to GEB is identical with the one obtained for aqueous media and binary-solvent system, and is equivalent to the Approach I to GEB.
基金supported by the “111 Project” of China (B18030) and Nankai University
文摘Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value added chemicals for decades.In the meantime,1-butanol and a series of value added products have been selectively generated through C–C bond coupling.In this mini-review,we focus on the recent advances in selective C–C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide,mixed metal oxide,hydroxyapatite and zeolite confined transition metal oxide catalysts.Among them,Pd-MgAlO_x and Sr-based hydroxyapatite exhibit>70%1-butanol selectivity,while Zn——xZr_yO_z and Ta-Si BEA zeolite achieve>80%of isobutene and butadiene selectivity respectively.The mechanism and reaction pathway of C–C bond formation in each reaction system are described in detail.The correlation between C–C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.
文摘A simple general relation P = Q + R + 1 between the number P of kinds of species, the number Q of charge and elemental/core balances and the number R of independent equilibrium constants is deduced, and its validity is confirmed for non-redox and redox electrolytic systems, of different degree of complexity.