期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research progress in failure mechanisms and electrolyte modification of high-voltage nickel-rich layered oxide-based lithium metal batteries
1
作者 Jiandong Liu Xinhong Hu +3 位作者 Shihan Qi Yurong Ren Yong Li Jianmin Ma 《InfoMat》 SCIE CSCD 2024年第2期57-75,共19页
High-voltage nickel(Ni)-rich layered oxide-based lithium metal batteries(LMBs)exhibit a great potential in advanced batteries due to the ultra-high energy density.However,it is still necessary to deal with the challen... High-voltage nickel(Ni)-rich layered oxide-based lithium metal batteries(LMBs)exhibit a great potential in advanced batteries due to the ultra-high energy density.However,it is still necessary to deal with the challenges in poor cyclic and thermal stability before realizing practical application where cycling life is considered.Among many improved strategies,mechanical and chemical stability for the electrode electrolyte interface plays a key role in addressing these challenges.Therefore,extensive effort has been made to address the challenges of electrode-electrolyte interface.In this progress,the failure mechanism of Ni-rich cathode,lithium metal anode and electrolytes are reviewed,and the latest breakthrough in stabilizing electrode-electrolyte interface is also summarized.Finally,the challenges and future research directions of Ni-rich LMBs are put forward. 展开更多
关键词 electrode-electrolyte interface electrolyte modification failure mechanisms high voltage lithium metal anode nickel-rich layered oxide cathode
原文传递
Stable cycling of practical high-voltage LiCoO_(2)pouch cell via electrolyte modification 被引量:1
2
作者 Chao Tang Yawei Chen +11 位作者 Zhengfeng Zhang Wenqiang Li Junhua Jian Yulin Jie Fanyang Huang Yehu Han Wanxia Li Fuping Ai Ruiguo Cao Pengfei Yan Yuhao Lu Shuhong Jiao 《Nano Research》 SCIE EI CSCD 2023年第3期3864-3871,共8页
Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries.However,their working mechanisms are still mysterious,especially in practical high-voltage LiCoO_(2)pouch lithium-ion b... Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries.However,their working mechanisms are still mysterious,especially in practical high-voltage LiCoO_(2)pouch lithium-ion batteries.Herein,we adopt a tridentate ligandcontaining 1,3,6-hexanetricarbonitrile(HTCN)as an effective electrolyte additive to shed light on the mechanism of stabilizing high-voltage LiCoO_(2)cathode(4.5 V)through nitriles.The LiCoO_(2)/graphite pouch cells with the HTCN additive electrolyte possess superior cycling performance,90%retention of the initial capacity after 800 cycles at 25℃,and 72%retention after 500 cycles at 45℃,which is feasible for practical application.Such an excellent cycling performance can be attributed to the stable interface:The HTCN molecules with strong electron-donating ability participate in the construction of cathode-electrolyte interphase(CEI)through coordinating with Co ions,which suppresses the decomposition of electrolyte and improves the structural stability of LiCoO_(2)during cycling.In summary,the work recognizes a coordinating-based interphase-forming mechanism as an effective strategy to optimize the performance of high voltage LiCoO_(2)cathode with appropriate electrolyte additives for practical pouch batteries. 展开更多
关键词 LiCoO_(2) high voltage nitrile additive interface adsorption pouch cell electrolyte modification
原文传递
Experimental and computational optimization of Prussian blue analogues as high-performance cathodes for sodium-ion batteries:A review
3
作者 Gwangeon Oh Junghoon Kim +4 位作者 Shivam Kansara Hyokyeong Kang Hun-Gi Jung Yang-Kook Sun Jang-Yeon Hwang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期627-662,I0015,共37页
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t... In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems. 展开更多
关键词 Prussian blue analogs(PBAs) Sodium ion batteries(SIBs) Structural engineering electrolyte modifications Experiments Density functional theory(DFT)
下载PDF
The safety aspect of sodium ion batteries for practical applications
4
作者 Yingshuai Wang Runqing Ou +5 位作者 Jingjing Yang Yuhang Xin Preetam Singh Feng Wu Yumin Qian Hongcai Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期407-427,I0009,共22页
Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and... Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs. 展开更多
关键词 Sodium ion batteries SAFETY Organic electrolytes modification Solid-state electrolyte Anode bulk modification Cathode bulk design
下载PDF
Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries 被引量:5
5
作者 Kun Zhang Zi-Xuan Li +5 位作者 Xiu Li Xi-Yong Chen Hong-Qun Tang Xin-Hua Liu Cai-Yun Wang Jian-Min Ma 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期740-750,共11页
Lithium-iron manganese phosphates(LiFex Mn_(1-x)PO_(4),0.1<x<0.9)have the merits of high safety and high working voltage.However,they also face the challenges of insufficient conductivity and poor cycling stabil... Lithium-iron manganese phosphates(LiFex Mn_(1-x)PO_(4),0.1<x<0.9)have the merits of high safety and high working voltage.However,they also face the challenges of insufficient conductivity and poor cycling stability.Some progress has been achieved to solve these problems.Herein,we firstly summarized the influence of different electrolyte systems on the electrochemical performance of LiFexMn_(1-x)PO_(4),and then discussed the effect of element doping,lastly studied the influences of conductive layer coating and morphology control on the cycling stability.Finally,the prospects and challenges of developing high-cycling LiFexMn_(1-x)PO_(4) were proposed. 展开更多
关键词 Lithium iron manganese phosphate CATHODE Cycling stability electrolyte modification DOPING Coating Controlled synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部