期刊文献+
共找到996,306篇文章
< 1 2 250 >
每页显示 20 50 100
How do high-voltage cathode and PEO electrolyte get along well?EIS analysis mechanism&potentiometric control strategy
1
作者 Xiaodong Bai Chaoliang Zheng +4 位作者 Heng Zhang Jian Liu Panpan Wang Baojia Xia Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期424-436,共13页
PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface p... PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented. 展开更多
关键词 PEo-based electrolyte High-voltage cathode Electrochemical impedance spectroscopy Mechanism research Electrochemical characteristic
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
2
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
3
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
4
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature electrolyte design BATTERIES
下载PDF
Challenges in Li-ion battery high-voltage technology and recent advances in high-voltage electrolytes 被引量:1
5
作者 Jianguo Liu Baohui Li +2 位作者 Jinghang Cao Xiao Xing Gan Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期73-98,共26页
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac... The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery High voltage electrolyte additive Solid electrolyte
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
6
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries 被引量:1
7
作者 Xiaochen Yang Xinyu Wang +2 位作者 Yue Xiang Longtao Ma Wei Huang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期227-253,共27页
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame... With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics. 展开更多
关键词 Asymmetric electrolyte Aqueous multivalent metal ion batteries Electrochemical stability windows electrolyte interface
下载PDF
Dilute Aqueous-Aprotic Electrolyte Towards Robust Zn-Ion Hybrid Supercapacitor with High Operation Voltage and Long Lifespan 被引量:2
8
作者 Shuilin Wu Yibing Yang +6 位作者 Mingzi Sun Tian Zhang Shaozhuan Huang Daohong Zhang Bolong Huang Pengfei Wang Wenjun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期1-12,共12页
With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery ... With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles. 展开更多
关键词 Zn-ion supercapacitors Zn metal anode electrolyte engineering Hydrogen bonds Solvation structures
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:3
9
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 NETWORK analysis PREVENTION
下载PDF
Lignin-derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance 被引量:1
10
作者 Jingqiang Zheng Yulun Wu +6 位作者 Chaohong Guan Danjun Wang Yanqing Lai Jie Li Fuhua Yang Simin Li Zhian Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期235-244,共10页
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi... Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance. 展开更多
关键词 hard carbon LIGNIN SODIUM components sodium-ion storage SOLID electrolyte INTERPHASE
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries 被引量:1
11
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 Atom substitution Solid-state electrolyte Machine learning Stabilized interface
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life 被引量:1
12
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte Self-healing Anti-freezing
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
13
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies Gel polymer electrolytes Lithium metal batteries
下载PDF
Advances in microfluidic-based DNA methylation analysis 被引量:1
14
作者 Jiwen Li Tiechuan Li Xuexin Duan 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期116-134,共19页
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ... DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis. 展开更多
关键词 Microfluidic chip DNA methylation analysis Molecular analysis High throughput Low cost
下载PDF
Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries 被引量:1
15
作者 Yuepeng Pang Zhengfang Nie +5 位作者 Fen Xu Lixian Sun Junhe Yang Dalin Sun Fang Fang Shiyou Zheng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期100-106,共7页
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg elec... Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells. 展开更多
关键词 all-solid-state Mg batteries amorphization Mg borohydride ammoniate Mg vacancy migration solid electrolyte
下载PDF
Rationally designing electrolyte additives for highly improving cyclability of LiNi_(0.5)Mn_(1.5)O_(4)/Graphite cells 被引量:1
16
作者 Zhiyong Xia Kuan Zhou +8 位作者 Xiaoyan Lin Zhangyating Xie Qiurong Chen Xiaoqing Li Jie Cai Suli Li Hai Wang Mengqing Xu Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期266-275,共10页
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo... High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries. 展开更多
关键词 electrolyte additive Design and synthesis CYCLABILITY High voltage batteries Cathode and anode interphases
下载PDF
A Review on Sources,Extractions and Analysis Methods of a Sustainable Biomaterial:Tannins 被引量:2
17
作者 Antonio Pizzi Marie-Pierre Laborie Zeki Candan 《Journal of Renewable Materials》 EI CAS 2024年第3期397-425,共29页
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ... Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses. 展开更多
关键词 TANNINS FLAVONOIDS SOURCES extraction methods analysis methods
下载PDF
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries 被引量:1
18
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 Solid-state electrolyte(SSE) All-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
下载PDF
Thin polymer electrolyte with MXene functional layer for uniform Li^(+) deposition in all-solid-state lithium battery 被引量:1
19
作者 Weijie Kou Yafang Zhang +3 位作者 Wenjia Wu Zibiao Guo Quanxian Hua Jingtao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期71-80,共10页
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ... Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery. 展开更多
关键词 MXene nanosheet Laminar functional layer Thin polymer electrolyte Dendrite-free Liþdeposition All-solid-state lithium battery
下载PDF
Lagrangian coherent structure analysis on transport of Acetes chinensis along coast of Lianyungang,China 被引量:1
20
作者 Kexin WANG Xueqing ZHANG +2 位作者 Qi LOU Xusheng XIANG Ying XIONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期345-359,共15页
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the... Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources. 展开更多
关键词 plankton accumulation hydrodynamic model Lagrangian particle-tracking model Lagrangian analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部