期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of Different Electrolytes on Stress Corrosion Properties of 2A12 Aluminum Alloy 被引量:3
1
作者 姜根 柏振海 +2 位作者 LUO Binghui WANG Shuai HE Chuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第3期400-406,共7页
The stress corrosion cracking(SCC)behaviors of 2A12 aluminum alloy after annealing treatment were studied by slow strain rate testing(SSRT),electrochemical polarization measurement,scanning electron microscope(SEM),en... The stress corrosion cracking(SCC)behaviors of 2A12 aluminum alloy after annealing treatment were studied by slow strain rate testing(SSRT),electrochemical polarization measurement,scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and transmission electron microscopy(TEM).Various concentrations of NaCl,H_(2)SO_(4)and HCl aqueous solution were prepared to act as the corrosive solution.The experimental results show that regarding the SCC,2A12 alloy performs best in NaCl solution but worst in HCl solution and intermediately between the above mentioned two cases in H_(2)SO_(4)solution.For the SSRT carried out in room temperature,there is a higher decrease in elongation without large strength loss for the alloy immersed in NaCl solution.With the test conducted in H_(2)SO_(4)solution,there is a higher strength loss and a relatively less loss of elongation compared to the one immersed in NaCl solution.With the test conducted in HCl solution,there is a relativel level loss of strength and elongation compared to either result carried out in NaCl solution or H_(2)SO_(4)solution. 展开更多
关键词 2A12 aluminum alloy stress corrosion cracking corrosive electrolyte SSRT
下载PDF
Experimental Study on the Degradation of Bonding Behavior between Reinforcing Bars and Concrete after Corrosion and Fatigue Damage
2
作者 Shiqin He Jiaxing Zhao +1 位作者 Chunyue Wang Hui Wang 《Structural Durability & Health Monitoring》 EI 2022年第3期195-212,共18页
In marine environments,the durability of reinforced concrete structures such as bridges,which suffer from the coupled effects of corrosion and fatigue damage,is significantly reduced.Fatigue loading can result in seve... In marine environments,the durability of reinforced concrete structures such as bridges,which suffer from the coupled effects of corrosion and fatigue damage,is significantly reduced.Fatigue loading can result in severe dete-rioration of the bonds between reinforcing steel bars and the surrounding concrete,particularly when reinforcing bars are corroded.Uniaxial tension testing was conducted under static loading and fatigue loading conditions to investigate the bonding characteristics between corroded reinforcing bars and concrete.An electrolyte corrosion technique was used to accelerate steel corrosion.The results show that the bond strength was reduced under fati-gue loading,although the concrete did not crack.Therefore,fatigue loading has negative effects on the bond strength between corroded steel bars and concrete.The effects of corrosion cracking on bond strength become more pronounced after corrosion cracking appears along the main reinforcing bars.When the average width of cracking along main reinforcing bars exceeds 3 mm,the bonding properties deteriorate rapidly based on the effects of corrosion cracking,whereas fatigue loading exhibits no additional effects on bond strength. 展开更多
关键词 Reinforced concrete fatigue loading electrolyte corrosion BOND uniaxial tension
下载PDF
UiO-66 type metal-organic framework as a multifunctional additive to enhance the interfacial stability of Ni-rich layered cathode material
3
作者 Ruixue Xue Na Liu +6 位作者 Liying Bao Lai Chen Yuefeng Su Yun Lu Jinyang Dong Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期378-386,共9页
To effectively alleviate the surface structure degradation caused by electrolyte corrosion and transition metal(TM) dissolution for Ni-rich(Ni content > 0.6) cathode materials, porous Zirconium based metalorganic f... To effectively alleviate the surface structure degradation caused by electrolyte corrosion and transition metal(TM) dissolution for Ni-rich(Ni content > 0.6) cathode materials, porous Zirconium based metalorganic frameworks(Zr-MOFs, UiO-66) material is utilized herein as a positive electrode additive. UiO-66 owns tunable attachment sites and strong binding affinity, making itself an efficient defluorination agent to suppress the undesirable reactions caused by fluorine species. Besides, it can also relieve TMs dissolution and block the migration of TMs toward anode side since it’s a multifarious metal ions adsorbent,realizing both cathode and anode interface protection. Benefiting from these advantages, the UiO-66 assistant Ni-rich cathode achieves superior cycling stability. Particularly in full cell, the positive effects of this multifunctional additive are more pronounced than in the half-cell, that is after 400 cycles at 2 C,the capacity retention has doubled with the addition of UiO-66. More broadly, this unique application of functional additive provides new insight into the degradation mechanism of layered cathode materials and offers a new avenue to develop high-energy density batteries. 展开更多
关键词 Ni-rich layered cathode Metal-organic framework additive Electrolyte corrosion Transition metal dissolution Interfacial stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部