A novel electromagnetic probe array(EMPA) diagnostic, which consists of a magnetic probe array and an electrostatic probe array, has recently been developed on EAST. The EMPA is fixed near the first wall at horizontal...A novel electromagnetic probe array(EMPA) diagnostic, which consists of a magnetic probe array and an electrostatic probe array, has recently been developed on EAST. The EMPA is fixed near the first wall at horizontal port P. The magnetic probe array of the EMPA consists of 24 identical magnetic probes, each of them capable of measuring toroidal, poloidal and radial magnetic fluctuations simultaneously, providing additional toroidal magnetic fluctuation measurements compared with the regular magnetic probes on EAST. With a higher sampling rate and self-resonant frequency, the EMPA magnetic probes can provide higher frequency magnetic fluctuation measurements. The magnetic probe array of the EMPA is composed of two parallel layers of magnetic probes with a radial distance of 63 mm, and each layer of magnetic probes is arranged in four poloidal rows and three toroidal columns. The compact arrangement of the EMPA magnetic probe array largely improves the toroidal mode number measurement ability from-8≤ n≤ 8 to-112≤ n≤ 112, and also improves the high poloidal wave number measurement ability of magnetic fluctuations compared with the regular high frequency magnetic probes on EAST. The electrostatic probe array of the EMPA consists of two sets of four-tip probes and a single-tip probe array with three poloidal rows and four toroidal columns. It complements the electrostatic parameter measurements behind the main limiter and near the first wall in EAST. The engineering details of the EMPA diagnostic, including the mechanical system, the electrical system, the acquisition and control system, and the effective area calibration, are presented. The preliminary applications of the EMPA in L-mode and H-mode discharges on EAST have demonstrated that the EMPA works well for providing information on the magnetic and electrostatic fluctuations and can contribute to deeper physical analysis in future EAST experiments.展开更多
The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is a...The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.展开更多
A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the p...A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.展开更多
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos. 2019YFE03030000 and 2022YFE03020004)National Natural Science Foundation of China (Nos. 12105187, 11905250 and 11975275)+1 种基金the China Postdoctoral Science Foundation (No. 2021M702245)the Users with Excellence Program of Hefei Science Center, CAS (No. 2021HSC-UE014)。
文摘A novel electromagnetic probe array(EMPA) diagnostic, which consists of a magnetic probe array and an electrostatic probe array, has recently been developed on EAST. The EMPA is fixed near the first wall at horizontal port P. The magnetic probe array of the EMPA consists of 24 identical magnetic probes, each of them capable of measuring toroidal, poloidal and radial magnetic fluctuations simultaneously, providing additional toroidal magnetic fluctuation measurements compared with the regular magnetic probes on EAST. With a higher sampling rate and self-resonant frequency, the EMPA magnetic probes can provide higher frequency magnetic fluctuation measurements. The magnetic probe array of the EMPA is composed of two parallel layers of magnetic probes with a radial distance of 63 mm, and each layer of magnetic probes is arranged in four poloidal rows and three toroidal columns. The compact arrangement of the EMPA magnetic probe array largely improves the toroidal mode number measurement ability from-8≤ n≤ 8 to-112≤ n≤ 112, and also improves the high poloidal wave number measurement ability of magnetic fluctuations compared with the regular high frequency magnetic probes on EAST. The electrostatic probe array of the EMPA consists of two sets of four-tip probes and a single-tip probe array with three poloidal rows and four toroidal columns. It complements the electrostatic parameter measurements behind the main limiter and near the first wall in EAST. The engineering details of the EMPA diagnostic, including the mechanical system, the electrical system, the acquisition and control system, and the effective area calibration, are presented. The preliminary applications of the EMPA in L-mode and H-mode discharges on EAST have demonstrated that the EMPA works well for providing information on the magnetic and electrostatic fluctuations and can contribute to deeper physical analysis in future EAST experiments.
基金Supported by the National Natural Science Foundation of China(61331019)
文摘The performance the quaternion-Capon( Q-Capon) beamformer degraded when suppressing the interferences that are coherent with the signal of interest( SOI). To tackle the problem,the spatial smoothing technique is adopted in quaternion domain to decorrelate the interferences by using linearly and uniformly spaced two-component electromagnetic vector-sensors. By averaging several translational invariant subarray quaternion covariance matrices,the quaternion spatial smoothing is performed to prevent the SOI cancellation phenomena caused by the presence of coherent interferences. It is demonstrated that the quaternion spatial smoothing Q-Capon beamformer can suppress the coherent interferences remarkably while the computational cost is lower than the complex domain long vector spatial smoothing counterpart. Theoretical analyses and simulation results validate the efficacy of the spatially smoothed Q-Capon beamformer in terms of coherent interference suppression capability.
基金supported by the Scientifc Research Fund of Zhejiang Provincial Education Department(No.Y201225848)the Scientifc and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2013124)
文摘A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.