The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of...The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings.展开更多
The protective effects of blueberry anthocyanin extracts against damage induced by extremely lowfrequency electromagnetic field(ELF-EMF)were investigated in a rat model.Wistar rats were exposed to ELF-EMF with or with...The protective effects of blueberry anthocyanin extracts against damage induced by extremely lowfrequency electromagnetic field(ELF-EMF)were investigated in a rat model.Wistar rats were exposed to ELF-EMF with or without the administration of blueberry anthocyanin extracts(50,100,and 200 mg/kg per day intragastrically once a day)for 30 days.Blueberry anthocyanin extracts supplementation inhibited the decrease in Nissl substance levels,cell membrane integrity,and mitochondrial membrane potential induced by ELF-EMF;prevented the increase in nitric oxide,malondialdehyde,and Ca2+concentrations;suppressed superoxide dismutase and glutathione depletion;and enhanced the cognitive ability of the rats exposed to ELF-EMF.The protective effects of blueberry anthocyanin extracts against hippocampal neuron injury caused by ELF-EMF were dose-dependent.These results demonstrated that blueberry anthocyanin extracts suppress hippocampal neuron injury caused by ELF-EMF by inhibiting cell membrane damage and oxidative stress pathways,and suggested that blueberry anthocyanin treatment potentially prevents hippocampal neuron injury.展开更多
The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,ev...The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,even in regions where the magnetic field B is zero.This effect demonstrates that quantum particles are influenced not only by the fields directly present but also by the potentials associated with those fields.In the AB effect,an electron beam is split into two paths,with one path encircling a solenoid and the other bypassing it.Despite the absence of a magnetic field in the regions traversed by the beams,the vector potential A associated with the magnetic flux Φ through the solenoid induces a phase shift in the electron’s wave function.This phase shift,quantified by △φ=qΦ/hc,manifests as a change in the interference pattern observed in the detection screen.The phenomenon underscores the principle of gauge invariance in QED(quantum electrodynamics),where physical observables remain invariant under local gauge transformations of the vector and scalar potentials.This reinforces the notion that the vector potential A has a profound impact on quantum systems,beyond its classical role.This article outlines the AB effect,including its theoretical framework,experimental observations,and implications.The focus on the role of the vector potential in quantum mechanics provides a comprehensive understanding of this important phenomenon.展开更多
Tribological properties of 150SN mineral oil and lubricating oils containing triethanolamine borate(TBE)with and without electromagnetic field impact were evaluated on a modified four-ball tribo-tester.The characteris...Tribological properties of 150SN mineral oil and lubricating oils containing triethanolamine borate(TBE)with and without electromagnetic field impact were evaluated on a modified four-ball tribo-tester.The characteristics of the worn surfaces were studied by scanning electronic microscopy(SEM),energy dispersive spectrometry(EDS)and X-ray photoelectron spectroscopy(XPS).Moreover,the tribological mechanisms are discussed from the viewpoint of physical effect and chemical effect.The results indicated that the friction coefficients and wear scar diameters(WSDs)lubricated by 150SN mineral oil under electromagnetic field were higher than those without electromagnetism impact.The WSDs of steel balls lubricated by TBE-doped oils under electromagnetic field were smaller than those obtained from non-electromagnetic field,but the friction coefficients were higher than those under non-electromagnetic field.A protective coating consists of wear particles could be formed on the frictional surface due to the physical effect of electromagnetic field on wear debris.The electromagnetic field could facilitate the interaction of elemental boron and nitrogen in TBE with metal interfaces,and contributes to forming tribo-chemical reaction film to reduce friction and wear.展开更多
We have previously found that long-term effects of exposure to radiofrequency electromagnetic fields in 5xFAD mice with severe late-stage Alzheimer’s disease reduced both amyloid-βdeposition and glial activation,inc...We have previously found that long-term effects of exposure to radiofrequency electromagnetic fields in 5xFAD mice with severe late-stage Alzheimer’s disease reduced both amyloid-βdeposition and glial activation,including microglia.To examine whether this therapeutic effect is due to the regulation of activated microglia,we analyzed mic roglial gene expression profiles and the existence of microglia in the brain in this study.5xFAD mice at the age of 1.5 months were assigned to sham-and radiofrequency electromagnetic fields-exposed groups and then animals were exposed to 1950 MHz radiofrequency electromagnetic fields at a specific absorption rate of 5 W/kg for 2 hours/day and 5 days/week for 6 months.We conducted behavioral tests including the object recognition and Y-maze tests and molecular and histopathological analysis of amyloid precursor protein/a myloid-beta metabolism in brain tissue.We confirmed that radiofrequency electromagnetic field exposure for 6 months ameliorated cognitive impairment and amyloid-βdeposition.The expression levels of Iba1(pan-microglial marker)and colony-stimulating factor 1 receptor(CSF1R;regulates microglial prolife ration)in the hippocampus in 5xFAD mice treated with radiofrequency electromagnetic fields were significantly reduced compared with those of the sham-exposed group.Subsequently,we analyzed the expression levels of genes related to mic rogliosis and microglial function in the radiofrequency electromagnetic fields-exposed group compared to those of a CSF1R inhibitor(PLX3397)-treated group.Both radiofrequency electromagnetic fields and PLX3397 suppressed the levels of genes related to microgliosis(Csf1r,CD68,and Ccl6)and pro-inflammatory cytokine interleukin-1β.N otably,the expression levels of genes related to mic roglial function,including Trem2,Fcgr1α,Ctss,and Spi1,were decreased after long-term radiofrequency electromagnetic field exposure,which was also observed in response to microglial suppression by PLX3397.These results showed that radiofrequency electromagnetic fields ameliorated amyloid-βpathology and cognitive impairment by suppressing amyloid-βdeposition-induced microgliosis and their key regulator,CSF1R.展开更多
Nowadays, the increasing use of electric equipments (mobile phones, PC-s, home appliances, radio-TV, etc.), apart of their benefit, has raised the concern of possible health danger when it comes to non ionizing electr...Nowadays, the increasing use of electric equipments (mobile phones, PC-s, home appliances, radio-TV, etc.), apart of their benefit, has raised the concern of possible health danger when it comes to non ionizing electromagnetic fields they emit. This paper is presenting the research done for the identification of the sources of such fields in the city of Gjirokastra, as well as for mapping the intensity of the field emitted. This study is mainly motivated by the absence of laws limiting field intensity in Albania and by the uncontrolled proliferation of emission sources. The position, the number and the different typologies of emitting sources are determined and afterwards, measurements of the intensity of these fields are done in the adjacency of the sources. Finally, the measured values were compared with the European limits of protection and the results of the measurements indicate that the level of exposure in this variety of sources is low.展开更多
Personal computers, apart from being ubiquitous in our everyday activity, very often have been object of study for eventual negative health consequences. During the recent years, a great number of schools in Albania a...Personal computers, apart from being ubiquitous in our everyday activity, very often have been object of study for eventual negative health consequences. During the recent years, a great number of schools in Albania are equipped with lab rooms for teaching computer skills. This has motivated us to carry out a campaign of measuring the intensity of electric and magnetic fields is such places in the schools of Gjirokastra. This paper presents the results of such a study for the evaluation of the possible hazard related to the exposure to this “electro-smog” of the students and teachers. This is done by comparing the measured values of physical quantities with the respective limits and standards recom-mended by scientists and established by European directives such as 2004/40/CE and 1999/519/CE.展开更多
The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)o...The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)of Jiangsu Province in China is estimated.The results show that the rough irregular terrain results in the rapid magnitude attenuation and the increase of the rise-time of the field waveform.For example,for the Yangzhou DF site as the circumference of a radius of 45 km,the root-mean-squared height(RMSH)of the real irregular terrain varies from 7 to 33 m;the extra field attenuation relative to the ideal ground surface ranges from 1%to 11%,and the extra rise-time increment varies from 0.1 to 0.6μs.Therefore,the extracted current peak of lightning return stroke may be underestimated from the remotely measured electromagnetic field,and the error varies along with different azimuths.展开更多
The effect of electromagnetic field on plasma β endorphin in 30 patients with migraine were studied in the experiment. All subjects received a 20 minute repetitive transcranial magnetic stimulation (Frequency 10Hz, A...The effect of electromagnetic field on plasma β endorphin in 30 patients with migraine were studied in the experiment. All subjects received a 20 minute repetitive transcranial magnetic stimulation (Frequency 10Hz, Average intensity 8mT) per time, and the total experiment lasted 20 times. Before and after the experiment, the EEG and plasma β endorphin were tested. The results show that the level of plasma β endorphin in patients blood increased significantly from (73.486±26.002)mg/ml to (116.934±67.592)mg/ml (p<0.01), and the EEG average magnitude of the migraine patients were improved obviously from 41.77μV to 47.42μV.展开更多
We studied the effect of extremely low frequency (ELF) pulsatileelectromagnetics fields on blood apparent viscosity and coagulation. With irradiationof ELF electromagnetics fields, the amount of chage at the surface o...We studied the effect of extremely low frequency (ELF) pulsatileelectromagnetics fields on blood apparent viscosity and coagulation. With irradiationof ELF electromagnetics fields, the amount of chage at the surface of erythrocyteincreases, the apparent viscosity of blood and the maximum shear stress of sludgedblood decrease (P<0.01). Compared among treatment groups, the pulsatile magneticfield was better influence on blood.展开更多
A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are inve...A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.展开更多
With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide ap...With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.展开更多
In order to obtain cast metal of high quality, an investigation was carried out by simultaneous imposition of multi electromagnetic fields from the outside of a cold crucible copper mold. Sn 4.5%Pb as a simulator of h...In order to obtain cast metal of high quality, an investigation was carried out by simultaneous imposition of multi electromagnetic fields from the outside of a cold crucible copper mold. Sn 4.5%Pb as a simulator of high melting point metal was continuously cast under different conditions. The results show that multi electromagnetic fields can eliminate surface defects, and coarse columnar grains of the solidification structure is turned into equiaxed crystal with the increase of magnetic flux density. Moreover, finer equiaxed crystal structure is obtained when rapidly solidified sheet is fed into the mold during continuous casting.[展开更多
In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of...In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of the building, which has a 5G base station on the top. The electric field intensity, magnetic field intensity, and power density have been measured. The measurement methods include background measurement and work measurement. Background measurement is the measurement of environmental electromagnetic field (EMF) before the installation of 5G base station while the working measurement is the measurement after the installation of 5G base station. The evaluation methods include t-test for qualitative evaluation and electromagnetic gain for quantitative evaluation. The results show that the electromagnetic environment after the installation of 5G base station in most places is different from that in the background. And the environmental electromagnetic fields in certain parts are lower than those in the background. The conclusions are as follows: 1) The electromagnetic environment of 5G base station is far lower than the control limit of the national standard and conforms to the national standard;2) The electromagnetic environment of 5G base station has little impact on the electromagnetic environment;3) It is not sufficient to assume that 5G is harmful to health without the results of the epidemiological investigation;4) Before the construction of 5G base station, do background EMF detection, which can provide support for future evaluation.展开更多
A significant share of the technology that has emerged over the past several decades produces electromagnetic field(EMFR)radiation.Communications devices,household appliances,industrial equipment,and medical equipment...A significant share of the technology that has emerged over the past several decades produces electromagnetic field(EMFR)radiation.Communications devices,household appliances,industrial equipment,and medical equipment and devices all produce EMFR with a variety of frequencies,strengths,and ranges.Some EMFR,such as Extremely Low Frequency(ELF),Radio Frequency(RF),and Ionizing Range(IR)radiation have been shown to have harmful effects on human health.Depending on the frequency and strength of the radiation,EMFR can have health effects at the cellular level as well as at brain,nervous,and cardiovascular levels.Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMFR.By introducing a more comprehensive field of EMFR study and practice,architects and designers can design for a safer electromagnetic(EM)indoor environment,and,as building and construction specialists,will be able to monitor and reduce EM radiation.This paper identifies the nature of EMFR in the built environment,the various EMFR sources,and its human health effects.It addresses European and US regulations for EMFR in buildings and provides a preliminary action plan.The challenges of developing measurement protocols for the various EMFR frequency ranges and determining the effects of EMFR on building occu-pants are discussed.This paper argues that a mature method for measuring EMFR in building environments and linking these measurements to human health impacts will foster occupant health and lead to the adequate development of safeguards for occupants of buildings in future research.展开更多
Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagne...Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.展开更多
In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linew...In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.展开更多
The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The m...The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium. When a 2s atom enters a region where an electric field is present, it undergoes a transition to the 2p state (Stark mixing). It then quickly decays to the ground level, emitting Lyman-a radiation, which is collected by a photomultiplier. The 2s → 2p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency (with peaks around l GHz). By measuring the intensity of the Lyman-a radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.展开更多
A general definition of quantum coherence is developed from analysis of superposition, entanglement, chemical bonding behavior, and basic phenomena of classical mechanics. Various properties of atoms can be better exp...A general definition of quantum coherence is developed from analysis of superposition, entanglement, chemical bonding behavior, and basic phenomena of classical mechanics. Various properties of atoms can be better explained if these particles are matter waves that embody a spectrum ranging from relatively coherent to decoherent states. It is demonstrated that quantum coherence so defined can comprehensively explain signal transmission in neurons and dynamics of the brain’s emergent electric field, including potential support for the claim that conscious volition is to some degree real rather than an illusion. Recent research in a physiological context suggests that electromagnetic radiation interacts with molecular structure to comprise integrated energy fields. A mechanism is proposed by which quantum coherence as accelerating electric currents in neurons may result in a broadened spectrum of electromagnetic radiation capable of interacting with molecular complexes in the brain and perhaps elsewhere in an organism to influence vibrational and structural properties. Research should investigate whether a consequent energy field is the basic perceptual substrate, with at least some additive electromagnetic wavelengths of this field involved in generating image percepts insofar as they arise from the body, and electromagnetic vibrations the signature of a more diverse phenomenon by which somewhat nondimensional features of perception such as sound, touch, taste, smell, interoceptive sensations, etc. partially arise. If examination of the brain reveals this organ to be composed of a coherence field, structured at least in part by broadened spectrums of EM radiation interacting with molecular components, this has major implications for furthering our model of the matter/mind interface and possibly physical reality in total.展开更多
文摘The study of Electromagnetic Compatibility is essential to ensure the harmonious operation of electronic equipment in a shared environment. The basic principles of Electromagnetic Compatibility focus on the ability of devices to withstand electromagnetic disturbances and not produce disturbances that could affect other systems. Imperceptible in most work situations, electromagnetic fields can, beyond certain thresholds, have effects on human health. The objective of the present article is focused on the modeling analysis of the influence of geometric parameters of industrial static converters radiated electromagnetic fields using Maxwell’s equations. To do this we used the analytical formalism for calculating the electromagnetic field emitted by a filiform conductor, to model the electromagnetic radiation of this device in the spatio-temporal domain. The interactions of electromagnetic waves with human bodies are complex and depend on several factors linked to the characteristics of the incident wave. To model these interactions, we implemented the physical laws of electromagnetic wave propagation based on Maxwell’s and bio-heat equations to obtain consistent results. These obtained models allowed us to evaluate the spatial profile of induced current and temperature of biological tissue during exposure to electromagnetic waves generated by this system. The simulation 2D results obtained from computer tools show that the temperature variation and current induced by the electromagnetic field can have a very significant influence on the life of biological tissue. The paper provides a comprehensive analysis using advanced mathematical models to evaluate the influence of electromagnetic fields. The findings have direct implications for workplace safety, potentially influencing standards and regulations concerning electromagnetic exposure in industrial settings.
基金supported by the Natural Science Foundation Key Program of Liaoning Province(20170540803)the Liaoning Provincial Department of Education Project(LSNJC201911).
文摘The protective effects of blueberry anthocyanin extracts against damage induced by extremely lowfrequency electromagnetic field(ELF-EMF)were investigated in a rat model.Wistar rats were exposed to ELF-EMF with or without the administration of blueberry anthocyanin extracts(50,100,and 200 mg/kg per day intragastrically once a day)for 30 days.Blueberry anthocyanin extracts supplementation inhibited the decrease in Nissl substance levels,cell membrane integrity,and mitochondrial membrane potential induced by ELF-EMF;prevented the increase in nitric oxide,malondialdehyde,and Ca2+concentrations;suppressed superoxide dismutase and glutathione depletion;and enhanced the cognitive ability of the rats exposed to ELF-EMF.The protective effects of blueberry anthocyanin extracts against hippocampal neuron injury caused by ELF-EMF were dose-dependent.These results demonstrated that blueberry anthocyanin extracts suppress hippocampal neuron injury caused by ELF-EMF by inhibiting cell membrane damage and oxidative stress pathways,and suggested that blueberry anthocyanin treatment potentially prevents hippocampal neuron injury.
文摘The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,even in regions where the magnetic field B is zero.This effect demonstrates that quantum particles are influenced not only by the fields directly present but also by the potentials associated with those fields.In the AB effect,an electron beam is split into two paths,with one path encircling a solenoid and the other bypassing it.Despite the absence of a magnetic field in the regions traversed by the beams,the vector potential A associated with the magnetic flux Φ through the solenoid induces a phase shift in the electron’s wave function.This phase shift,quantified by △φ=qΦ/hc,manifests as a change in the interference pattern observed in the detection screen.The phenomenon underscores the principle of gauge invariance in QED(quantum electrodynamics),where physical observables remain invariant under local gauge transformations of the vector and scalar potentials.This reinforces the notion that the vector potential A has a profound impact on quantum systems,beyond its classical role.This article outlines the AB effect,including its theoretical framework,experimental observations,and implications.The focus on the role of the vector potential in quantum mechanics provides a comprehensive understanding of this important phenomenon.
基金financial support provided by the Basic Science and Frontier Technology Research Project of Chongqing (CSTC, 2017jcyjAX0058)
文摘Tribological properties of 150SN mineral oil and lubricating oils containing triethanolamine borate(TBE)with and without electromagnetic field impact were evaluated on a modified four-ball tribo-tester.The characteristics of the worn surfaces were studied by scanning electronic microscopy(SEM),energy dispersive spectrometry(EDS)and X-ray photoelectron spectroscopy(XPS).Moreover,the tribological mechanisms are discussed from the viewpoint of physical effect and chemical effect.The results indicated that the friction coefficients and wear scar diameters(WSDs)lubricated by 150SN mineral oil under electromagnetic field were higher than those without electromagnetism impact.The WSDs of steel balls lubricated by TBE-doped oils under electromagnetic field were smaller than those obtained from non-electromagnetic field,but the friction coefficients were higher than those under non-electromagnetic field.A protective coating consists of wear particles could be formed on the frictional surface due to the physical effect of electromagnetic field on wear debris.The electromagnetic field could facilitate the interaction of elemental boron and nitrogen in TBE with metal interfaces,and contributes to forming tribo-chemical reaction film to reduce friction and wear.
基金Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by Korea government(MSIT),Nos.2017-0-00961 and 2019-0-00102(to HDC)。
文摘We have previously found that long-term effects of exposure to radiofrequency electromagnetic fields in 5xFAD mice with severe late-stage Alzheimer’s disease reduced both amyloid-βdeposition and glial activation,including microglia.To examine whether this therapeutic effect is due to the regulation of activated microglia,we analyzed mic roglial gene expression profiles and the existence of microglia in the brain in this study.5xFAD mice at the age of 1.5 months were assigned to sham-and radiofrequency electromagnetic fields-exposed groups and then animals were exposed to 1950 MHz radiofrequency electromagnetic fields at a specific absorption rate of 5 W/kg for 2 hours/day and 5 days/week for 6 months.We conducted behavioral tests including the object recognition and Y-maze tests and molecular and histopathological analysis of amyloid precursor protein/a myloid-beta metabolism in brain tissue.We confirmed that radiofrequency electromagnetic field exposure for 6 months ameliorated cognitive impairment and amyloid-βdeposition.The expression levels of Iba1(pan-microglial marker)and colony-stimulating factor 1 receptor(CSF1R;regulates microglial prolife ration)in the hippocampus in 5xFAD mice treated with radiofrequency electromagnetic fields were significantly reduced compared with those of the sham-exposed group.Subsequently,we analyzed the expression levels of genes related to mic rogliosis and microglial function in the radiofrequency electromagnetic fields-exposed group compared to those of a CSF1R inhibitor(PLX3397)-treated group.Both radiofrequency electromagnetic fields and PLX3397 suppressed the levels of genes related to microgliosis(Csf1r,CD68,and Ccl6)and pro-inflammatory cytokine interleukin-1β.N otably,the expression levels of genes related to mic roglial function,including Trem2,Fcgr1α,Ctss,and Spi1,were decreased after long-term radiofrequency electromagnetic field exposure,which was also observed in response to microglial suppression by PLX3397.These results showed that radiofrequency electromagnetic fields ameliorated amyloid-βpathology and cognitive impairment by suppressing amyloid-βdeposition-induced microgliosis and their key regulator,CSF1R.
文摘Nowadays, the increasing use of electric equipments (mobile phones, PC-s, home appliances, radio-TV, etc.), apart of their benefit, has raised the concern of possible health danger when it comes to non ionizing electromagnetic fields they emit. This paper is presenting the research done for the identification of the sources of such fields in the city of Gjirokastra, as well as for mapping the intensity of the field emitted. This study is mainly motivated by the absence of laws limiting field intensity in Albania and by the uncontrolled proliferation of emission sources. The position, the number and the different typologies of emitting sources are determined and afterwards, measurements of the intensity of these fields are done in the adjacency of the sources. Finally, the measured values were compared with the European limits of protection and the results of the measurements indicate that the level of exposure in this variety of sources is low.
文摘Personal computers, apart from being ubiquitous in our everyday activity, very often have been object of study for eventual negative health consequences. During the recent years, a great number of schools in Albania are equipped with lab rooms for teaching computer skills. This has motivated us to carry out a campaign of measuring the intensity of electric and magnetic fields is such places in the schools of Gjirokastra. This paper presents the results of such a study for the evaluation of the possible hazard related to the exposure to this “electro-smog” of the students and teachers. This is done by comparing the measured values of physical quantities with the respective limits and standards recom-mended by scientists and established by European directives such as 2004/40/CE and 1999/519/CE.
基金Supported by the Application of the Forecasting Warning System for Lightning Disaster in Yunan Plateau(YNKJXM20190733)National Natural Science Foundation of China(41775006,41575004).
文摘The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)of Jiangsu Province in China is estimated.The results show that the rough irregular terrain results in the rapid magnitude attenuation and the increase of the rise-time of the field waveform.For example,for the Yangzhou DF site as the circumference of a radius of 45 km,the root-mean-squared height(RMSH)of the real irregular terrain varies from 7 to 33 m;the extra field attenuation relative to the ideal ground surface ranges from 1%to 11%,and the extra rise-time increment varies from 0.1 to 0.6μs.Therefore,the extracted current peak of lightning return stroke may be underestimated from the remotely measured electromagnetic field,and the error varies along with different azimuths.
文摘The effect of electromagnetic field on plasma β endorphin in 30 patients with migraine were studied in the experiment. All subjects received a 20 minute repetitive transcranial magnetic stimulation (Frequency 10Hz, Average intensity 8mT) per time, and the total experiment lasted 20 times. Before and after the experiment, the EEG and plasma β endorphin were tested. The results show that the level of plasma β endorphin in patients blood increased significantly from (73.486±26.002)mg/ml to (116.934±67.592)mg/ml (p<0.01), and the EEG average magnitude of the migraine patients were improved obviously from 41.77μV to 47.42μV.
文摘We studied the effect of extremely low frequency (ELF) pulsatileelectromagnetics fields on blood apparent viscosity and coagulation. With irradiationof ELF electromagnetics fields, the amount of chage at the surface of erythrocyteincreases, the apparent viscosity of blood and the maximum shear stress of sludgedblood decrease (P<0.01). Compared among treatment groups, the pulsatile magneticfield was better influence on blood.
文摘A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.
文摘With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.
文摘In order to obtain cast metal of high quality, an investigation was carried out by simultaneous imposition of multi electromagnetic fields from the outside of a cold crucible copper mold. Sn 4.5%Pb as a simulator of high melting point metal was continuously cast under different conditions. The results show that multi electromagnetic fields can eliminate surface defects, and coarse columnar grains of the solidification structure is turned into equiaxed crystal with the increase of magnetic flux density. Moreover, finer equiaxed crystal structure is obtained when rapidly solidified sheet is fed into the mold during continuous casting.[
文摘In order to evaluate the electromagnetic environment of 5G base station, measurement and evaluation of the electromagnetic environment are studied. The 12 measuring points are chosen on the roof, inside and outside of the building, which has a 5G base station on the top. The electric field intensity, magnetic field intensity, and power density have been measured. The measurement methods include background measurement and work measurement. Background measurement is the measurement of environmental electromagnetic field (EMF) before the installation of 5G base station while the working measurement is the measurement after the installation of 5G base station. The evaluation methods include t-test for qualitative evaluation and electromagnetic gain for quantitative evaluation. The results show that the electromagnetic environment after the installation of 5G base station in most places is different from that in the background. And the environmental electromagnetic fields in certain parts are lower than those in the background. The conclusions are as follows: 1) The electromagnetic environment of 5G base station is far lower than the control limit of the national standard and conforms to the national standard;2) The electromagnetic environment of 5G base station has little impact on the electromagnetic environment;3) It is not sufficient to assume that 5G is harmful to health without the results of the epidemiological investigation;4) Before the construction of 5G base station, do background EMF detection, which can provide support for future evaluation.
基金supported by the Powell Center for Construction&Environment at the University of Florida.
文摘A significant share of the technology that has emerged over the past several decades produces electromagnetic field(EMFR)radiation.Communications devices,household appliances,industrial equipment,and medical equipment and devices all produce EMFR with a variety of frequencies,strengths,and ranges.Some EMFR,such as Extremely Low Frequency(ELF),Radio Frequency(RF),and Ionizing Range(IR)radiation have been shown to have harmful effects on human health.Depending on the frequency and strength of the radiation,EMFR can have health effects at the cellular level as well as at brain,nervous,and cardiovascular levels.Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMFR.By introducing a more comprehensive field of EMFR study and practice,architects and designers can design for a safer electromagnetic(EM)indoor environment,and,as building and construction specialists,will be able to monitor and reduce EM radiation.This paper identifies the nature of EMFR in the built environment,the various EMFR sources,and its human health effects.It addresses European and US regulations for EMFR in buildings and provides a preliminary action plan.The challenges of developing measurement protocols for the various EMFR frequency ranges and determining the effects of EMFR on building occu-pants are discussed.This paper argues that a mature method for measuring EMFR in building environments and linking these measurements to human health impacts will foster occupant health and lead to the adequate development of safeguards for occupants of buildings in future research.
文摘Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.
基金supported by the National Basic Research Program of China (Grant No. 2011CB921601)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001)the Graduate Outstanding Innovation Item of Shanxi Province, China (Grant No. 20113001)
文摘In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.
文摘The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium. When a 2s atom enters a region where an electric field is present, it undergoes a transition to the 2p state (Stark mixing). It then quickly decays to the ground level, emitting Lyman-a radiation, which is collected by a photomultiplier. The 2s → 2p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency (with peaks around l GHz). By measuring the intensity of the Lyman-a radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.
文摘A general definition of quantum coherence is developed from analysis of superposition, entanglement, chemical bonding behavior, and basic phenomena of classical mechanics. Various properties of atoms can be better explained if these particles are matter waves that embody a spectrum ranging from relatively coherent to decoherent states. It is demonstrated that quantum coherence so defined can comprehensively explain signal transmission in neurons and dynamics of the brain’s emergent electric field, including potential support for the claim that conscious volition is to some degree real rather than an illusion. Recent research in a physiological context suggests that electromagnetic radiation interacts with molecular structure to comprise integrated energy fields. A mechanism is proposed by which quantum coherence as accelerating electric currents in neurons may result in a broadened spectrum of electromagnetic radiation capable of interacting with molecular complexes in the brain and perhaps elsewhere in an organism to influence vibrational and structural properties. Research should investigate whether a consequent energy field is the basic perceptual substrate, with at least some additive electromagnetic wavelengths of this field involved in generating image percepts insofar as they arise from the body, and electromagnetic vibrations the signature of a more diverse phenomenon by which somewhat nondimensional features of perception such as sound, touch, taste, smell, interoceptive sensations, etc. partially arise. If examination of the brain reveals this organ to be composed of a coherence field, structured at least in part by broadened spectrums of EM radiation interacting with molecular components, this has major implications for furthering our model of the matter/mind interface and possibly physical reality in total.