We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the resu...We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .展开更多
Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling a...Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling analysis. Numerical simulation offers an opportunity to overcome the problem. Nevertheless, most present models for EMF process are limited to 2D axisymmetric model. So, a three-dimensional (3D) finite element model was established to analyze the electromagnetic sheet bulging. The contact between the sheet and the die and the effect of sheet deformation on the magnetic field analysis were both taken into consideration during the forming process. The simulation results of deflection at the sheet center and 20 mm away from the center were in agreement with the experimental ones. The plastic strain energy and plastic strain were analyzed.展开更多
Electromagnetic forming (EMF) is a high velocity forming process that uses impulse magnetic force. Coil is an important component of EMF system which needs to be designed depending on application. Flat spiral coils ...Electromagnetic forming (EMF) is a high velocity forming process that uses impulse magnetic force. Coil is an important component of EMF system which needs to be designed depending on application. Flat spiral coils are generally used for electromagnetic forming of sheet metals. However, with this type of coil the central portion of the workpiece experiences marginal magnetic force. This leads to in-sufficient deformation at this portion and other problems like air entrapment. In this study, a conceptual design of flat coil was proposed for better distribution of magnetic forces over the workpiece. Comparative analysis of distribution of magnetic force, magnetic field and current density using the proposed and the existing coil designs were carried out using FEM. The result indicates that the proposed coil design produces comparatively better magnetic force distribution over the workpiece. Calculation of self-inductance of such coils was also carried out and was compared with FE simulation.展开更多
The effects of the length of solenoid coil on tube compression in electromagnetic forming were investigated either by theory analysis or through sequential coupling numerical simulation. The details of the electromagn...The effects of the length of solenoid coil on tube compression in electromagnetic forming were investigated either by theory analysis or through sequential coupling numerical simulation. The details of the electromagnetic and the mechanical models in the simulation were described. The results show that the amplitude of coil current waveform and the current frequency decrease with the increase of the coil length. And the peak value of magnetic pressure is inversely proportional to the coil length. The distribution of the magnetic force acting on the tube is inhomogeneous while the tube is longer than the coil. The shortened coil length causes the increases of the maximum deformation and energy efficiency. The numerically calculated result and the experimental one of the final tube profile are in good agreement.展开更多
The grain refinement mechanism and texture evolution of electromagnetically formed polycrystalline Cu sheets were investigated using the electron back-scattered diffraction(EBSD) technique. It is found that the averag...The grain refinement mechanism and texture evolution of electromagnetically formed polycrystalline Cu sheets were investigated using the electron back-scattered diffraction(EBSD) technique. It is found that the average grain size decreases from 35.88 μm to 8.77 μm. The grain refinement was mainly attributed to dynamic recrystallization(DRX) at the grain boundary regions of bulged Cu samples where the inhomogeneous dislocation density and the large lattice misorientation were observed. The DRX mechanisms at the grain boundaries were discussed with respect to the strain-induced grain boundary migration nucleation. Moreover, the orientation distribution function(ODF) of the sample with the strain of 50% demonstrated a strong {110}<211> texture and a relatively weak {001}<100> texture. The texture evolution was discussed using the plastic work values of the grains with various orientations, which were calculated according to the Taylor model and the virtual work principle. The experimental results show that the expended plastic work of the grains with {110} orientation is 9.69 MPa, which is distinctly higher than those of the grains with the {001} and {111} orientations. This indicates that the formation of the {110} orientated texture would be preferred with increasing strain in good agreement with the experimental result.展开更多
In this paper local compressive deforming of a hexagonal tube of aluminum (JISA1050) is investigated by an electromagnetic forming. The hexagonal tubes are annealed for 1h. at 400℃, which have 55mm width with 1mm t...In this paper local compressive deforming of a hexagonal tube of aluminum (JISA1050) is investigated by an electromagnetic forming. The hexagonal tubes are annealed for 1h. at 400℃, which have 55mm width with 1mm thickness, and 10mm corner edius. The deformed ation of the hexagonal tube, i.e., bead width, is 10, 15, 20mm, respectively. The magnetic flux density in the gap between the field shaper and the external surface of hexagonal tube is measured, and the result is that the magnetic flux density for a given voltage is almost identical along the gap) and decreases with increasing the gap. The profiles and the strain distribution of the hexagonal tube de- formed are affected by the change Of the charging voltage and the dimensions of a bead width. The greater compressive strum in the cireuwtrential direction is develOPed on plane part near corner,while tensile strain on the corner occurs. A metallic block is inserted inside the hexagonal tube so that uniform profile can be obtained. The simulation of the forming is performed by a finite-element method and compared with the experimental results.展开更多
Electromagnetic V-shape bending of small size sheet blank is investigated numerically and experimentally. Three-dimensional electromagnetic field models are established to calculate the magnetic force distribution on ...Electromagnetic V-shape bending of small size sheet blank is investigated numerically and experimentally. Three-dimensional electromagnetic field models are established to calculate the magnetic force distribution on the sheet by software ANSYS / EMAG. Series of electromagnetic V-shape bending forming experiments are presented,in which small size uniform pressure coil and big size round flat spiral coil are used. The results show that small size uniform pressure coil is not suitable for electromagnetic forming of small size flat sheet,and the coil is susceptible to failure such as bulging,ablation and cracking. When the plane dimension of round flat spiral coil is bigger than sheet blank sizes,the induced current crowding effect will be resulted which seriously influence the magnetic force distribution on the sheet. In this case,magnetic force distribution can be adjusted through the change of the relative position between coil and sheet,the desired deformation can be obtained finally. Therefore,big size round flat spiral coil can be well applied to electromagnetic V-shape bending forming of small size flat sheet.展开更多
The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as alumi...The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as aluminum and its alloys,to be deformed through this procedure,it is useful to know the stress and strain state that occurs in the material during forming.In this work,the modeling of stresses and strains in electromagnetically deformed AlMn0.5Mg0.5 sheet was made.The modeling was achieved using the finite element method and it was verified through experimental tests.To determine the residual stresses,the X-ray diffraction method was used.The strains were established by measuring the displacements of the nodes in the network inscribed on the specimen by means of three coordinates measuring machine.A good agreement between the modeling results and experimental data was found.展开更多
The effects of geometrical characteristics of echelon coil on the magnetic pressure distribution and their contribution to the final shape of parts were focused and investigated through experiments and numerical simul...The effects of geometrical characteristics of echelon coil on the magnetic pressure distribution and their contribution to the final shape of parts were focused and investigated through experiments and numerical simulation using FEM software ANSYS. The results show that the geometrical characteristics of echelon coil play a key role in controlling the magnetic pressure acting on the tube. They show a hump-like distribution near the interface between bigger diameter region and transition region of echelon coil, and affect the final shape of tubular parts then. With the reduction of relative diameter, the magnetic pressure in smaller diameter region decreases and its distribution gradient in transition region increases. With the augment of relative length, the magnetic pressure increases in bigger diameter region, while it almost remains constant in smaller diameter region, and the gradient in transition region enhances sharply. The distribution of magnetic pressure in the axial direction of tube agrees well with the profile of specimen.展开更多
The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulat...The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulation result agrees with the principles of uniform pressure electromagnetic actuator.The reason for coil failure was proposed.Then the magnetic forces on the sheet were input into an explicit finite element software ANSYS/LS-DYNA to analyze the deformation law of the sheet.展开更多
Electromagnetic forming(EMF)is a high-velocity manufacturing technique which uses electromagnetic(Lorentz)body forces to shape sheet metal parts.One of the several advantages of EMF is the considerable ductility incre...Electromagnetic forming(EMF)is a high-velocity manufacturing technique which uses electromagnetic(Lorentz)body forces to shape sheet metal parts.One of the several advantages of EMF is the considerable ductility increase observed in several metals,with aluminum featuring prominently among them.Electromagnetically assisted sheet metal stamping(EMAS)is an innovative hybrid sheet metal processing technique that combines EMF into traditional stamping.To evaluate the efficiency of this technique,an experimental scheme of EMAS was established according to the conventional stamping of cylindrical parts from aluminum and the formability encountered was discussed.Furthermore,a "multi-step,loose coupling" numerical scheme was proposed to investigate the deformation behaviors based on the ANSYS Multiphysics/LS-DYNA platform through establishing user-defined subroutines.The results show that electromagnetically assisted deep drawing can remarkably improve the formability of aluminum cylindrical parts.The proposed numerical scheme can successfully simulate the related Stamping-EMF process,and the deformation characteristics of sheet metal reflect experimental results.The predicted results are also validated with the profiles of the deformed sheets in experiments.展开更多
than 2.2, the electromagnetic pressure acting on melt can be simply expressed as Pm =B^2/wμ, and the melt shape would be known only by measuring the distribution of magnetic flux density. As a is small and makes the ...than 2.2, the electromagnetic pressure acting on melt can be simply expressed as Pm =B^2/wμ, and the melt shape would be known only by measuring the distribution of magnetic flux density. As a is small and makes the ratio a/8 less than 2.2, the melt shape and electromagnetic pressure for confining and shaping are determined not only by magnetic flux density B but also by melt thickness a, electromagnetic parameter μγ and current frequency f. In this paper, an equation used to calculate electromagnetic pressure acting on 'thin plate-form melt' is brought forward. The equation gives a precise relationship between electromagnetic pressure factor p and melt thickness a, electromagnetic parameter μγ and current frequency f.展开更多
Electromagnetic forming is one of the high-rate forming methods that can be extensively used to form and join axisymmetric metal sheet and tube. Tendency of homogeneous radial deformation during electromagnetic compre...Electromagnetic forming is one of the high-rate forming methods that can be extensively used to form and join axisymmetric metal sheet and tube. Tendency of homogeneous radial deformation during electromagnetic compression of aluminium tube was investigated through the design optimization method based on sequential coupling numerical simulation and experiments. The results show that the tendency depends on the length ratio of tube to coil (R), which has a critical value (Rc) corresponding to the relatively homogeneous radial deformation along axial direction. The tube length relative to Rc is insensitive to the discharge voltage. When R is greater than Rc, the deformed tube presents horn shape and the shorter coil makes for local deformation. If R is less than Rc, the deformed tube presents drum shape and the longer coil contributes to larger deformation at tube end. Rc increases with coli length and could approach to 1; inversely, it could approach to 0. These results indicate the design optimization method based on the sequential coupling numerical simulation is feasible, which can be used to realize the controllable and precise deformation of metal tube.展开更多
In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz force...In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz forces to achieve plastic deformation of sheet metal;according to the previous analysis, the results have shown that in most cases, the Lorentz force acting on the workpiece (metal) is not uniform, there are uneven axial deformations of the metal plates which prevent the rapid advancement of today’s technology. In this article, we presented some advanced analyzes which will lead us to improve the technical solution for the problems of non-uniform axial deformations of the metals in the traditional tube electromagnetic forming technology (EMF). A field shaper is used as a practical forming tool to influence the magnetic field and magnetic pressure distribution, thereby improving the forming ability and result during the electromagnetic forming (EMF) process and we see that induced eddy current control is realized by changing the structural parameters of the magnetic field shaper;which improves the strength and controllability of the magnetic force that acts on the workpiece;thereby a greater radial magnetic pressure can be achieved with field shaper than the case without it;the field shaper regulates the electromagnetic force, the distribution of the magnetic pressure decreases, and the uniform force area of the tube increases which effectively enhances the uniform range of the pipe electromagnetic bulging and the electromagnetic induction coupling between the coil and the metallic workpiece is generally required to produce the Lorentz forces. Using COMSOL Multiphysics® simulation software helped us to accurately represent the real world, simulating multiple physical effects that happened in this model during the process.展开更多
We propose a new description of a nucleon as a pair of pions. The baryon number of our description of nucleon is not 1 but 0. However, this is probable because the proton spin crisis shows that the baryon spin cannot ...We propose a new description of a nucleon as a pair of pions. The baryon number of our description of nucleon is not 1 but 0. However, this is probable because the proton spin crisis shows that the baryon spin cannot tell the number of composing quarks anymore. Because we use the derived pion wave function to describe a nucleon, our description has automatically the pionic degree of freedom and can be compared to the constituent quark model. Using this description, we investigate the electric charge and magnetization density functions of protons and neutrons. The electric charge density function of neutron is quite similar to those of Galster model and Maints data except the magnitude of singularity. The density functions of proton also show the similar behavior as those of Kelly’s except near origin. Taking the Fourier transform of the density functions, we obtain the Sachs electromagnetic form factors that can be compared to those in the parametrization derived by Ye et al.展开更多
A significant share of the technology that has emerged over the past several decades produces electromagnetic field(EMFR)radiation.Communications devices,household appliances,industrial equipment,and medical equipment...A significant share of the technology that has emerged over the past several decades produces electromagnetic field(EMFR)radiation.Communications devices,household appliances,industrial equipment,and medical equipment and devices all produce EMFR with a variety of frequencies,strengths,and ranges.Some EMFR,such as Extremely Low Frequency(ELF),Radio Frequency(RF),and Ionizing Range(IR)radiation have been shown to have harmful effects on human health.Depending on the frequency and strength of the radiation,EMFR can have health effects at the cellular level as well as at brain,nervous,and cardiovascular levels.Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMFR.By introducing a more comprehensive field of EMFR study and practice,architects and designers can design for a safer electromagnetic(EM)indoor environment,and,as building and construction specialists,will be able to monitor and reduce EM radiation.This paper identifies the nature of EMFR in the built environment,the various EMFR sources,and its human health effects.It addresses European and US regulations for EMFR in buildings and provides a preliminary action plan.The challenges of developing measurement protocols for the various EMFR frequency ranges and determining the effects of EMFR on building occu-pants are discussed.This paper argues that a mature method for measuring EMFR in building environments and linking these measurements to human health impacts will foster occupant health and lead to the adequate development of safeguards for occupants of buildings in future research.展开更多
A two-dimensional computational model coupling an annular electromagnetic stirring(A-EMS) with a macroscopic heat and fluid flow analysis in Al-alloys semisolid slurry preparation was developed.The dynamic evolution...A two-dimensional computational model coupling an annular electromagnetic stirring(A-EMS) with a macroscopic heat and fluid flow analysis in Al-alloys semisolid slurry preparation was developed.The dynamic evolutions of the electromagnetic field,flow field,and temperature field were presented successfully by commercial software ANSYS 10.0 with corresponding experimental verification.A horizontally rotational electromagnetic field and,thereby,a more intensive velocity field were uniformly distributed in the stirred melt even at commercial frequency,and thus,a lower temperature difference in the stirred melt and subsequent uniformly fine microstructures were obtained compared with the normal electromagnetic stirring.The simulation results were in good agreement with experimental ones.展开更多
The hot top EMC (electromagnetic casting) method was put forward, namely, the shape of top liquid column was formed by the hot top in the screen and the semi suspended liquid column was formed by the electromagnetic f...The hot top EMC (electromagnetic casting) method was put forward, namely, the shape of top liquid column was formed by the hot top in the screen and the semi suspended liquid column was formed by the electromagnetic force nearby the liquid solid interface frontier. Using the numerical simulating technique, the temperature distribution was discussed, the effect of parameters such as upper conduct distance (UCD), cooling water rate of flow, pouring temperature and liquid column height on casting velocity were studied, the relationship among them was confirmed finally. According to the calculated results, the hot top EMC shaping system was designed and a lot of experiments were performed. The pure Al thin slabs of 480 mm×20 mm×850 mm were made successfully. The result showed that the casting velocity curve obtained experimentally almost coincides to the calculated one.展开更多
In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field...In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field (EMF) and the levitation characteristics in the melting processes are analyzed. It is shown that in the processes of levitation melting with cold crucible, the power frequency and cold crucible structure are the decisive factors for the ability of magnetic flux penetrating into cold crucible. The magnetic flux density in cold crucible is reduced as the increasing of power frequency, and this tendency becomes stronger when the power frequency is higher than 100kHz. The segmented structure of cold crucible can reduce the induction eddy in itself effectively, and the higher the power frequency is, the better the result is. So, a cold crucible can be segmented into 16-20 sectors for high frequency electromagnetic field and/or 8-12 sectors for lower frequency one. It is also shown that the levitation force of melting charge is related to coil current as a parabolic function.展开更多
文摘We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .
基金Project (50875093) supported by the National Natural Science Foundation of China
文摘Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling analysis. Numerical simulation offers an opportunity to overcome the problem. Nevertheless, most present models for EMF process are limited to 2D axisymmetric model. So, a three-dimensional (3D) finite element model was established to analyze the electromagnetic sheet bulging. The contact between the sheet and the die and the effect of sheet deformation on the magnetic field analysis were both taken into consideration during the forming process. The simulation results of deflection at the sheet center and 20 mm away from the center were in agreement with the experimental ones. The plastic strain energy and plastic strain were analyzed.
文摘Electromagnetic forming (EMF) is a high velocity forming process that uses impulse magnetic force. Coil is an important component of EMF system which needs to be designed depending on application. Flat spiral coils are generally used for electromagnetic forming of sheet metals. However, with this type of coil the central portion of the workpiece experiences marginal magnetic force. This leads to in-sufficient deformation at this portion and other problems like air entrapment. In this study, a conceptual design of flat coil was proposed for better distribution of magnetic forces over the workpiece. Comparative analysis of distribution of magnetic force, magnetic field and current density using the proposed and the existing coil designs were carried out using FEM. The result indicates that the proposed coil design produces comparatively better magnetic force distribution over the workpiece. Calculation of self-inductance of such coils was also carried out and was compared with FE simulation.
基金Project(50575052) supported by the National Natural Science Foundation of China
文摘The effects of the length of solenoid coil on tube compression in electromagnetic forming were investigated either by theory analysis or through sequential coupling numerical simulation. The details of the electromagnetic and the mechanical models in the simulation were described. The results show that the amplitude of coil current waveform and the current frequency decrease with the increase of the coil length. And the peak value of magnetic pressure is inversely proportional to the coil length. The distribution of the magnetic force acting on the tube is inhomogeneous while the tube is longer than the coil. The shortened coil length causes the increases of the maximum deformation and energy efficiency. The numerically calculated result and the experimental one of the final tube profile are in good agreement.
基金Funded by the National Fundamental Research Program of China(No.2011CB012806)
文摘The grain refinement mechanism and texture evolution of electromagnetically formed polycrystalline Cu sheets were investigated using the electron back-scattered diffraction(EBSD) technique. It is found that the average grain size decreases from 35.88 μm to 8.77 μm. The grain refinement was mainly attributed to dynamic recrystallization(DRX) at the grain boundary regions of bulged Cu samples where the inhomogeneous dislocation density and the large lattice misorientation were observed. The DRX mechanisms at the grain boundaries were discussed with respect to the strain-induced grain boundary migration nucleation. Moreover, the orientation distribution function(ODF) of the sample with the strain of 50% demonstrated a strong {110}<211> texture and a relatively weak {001}<100> texture. The texture evolution was discussed using the plastic work values of the grains with various orientations, which were calculated according to the Taylor model and the virtual work principle. The experimental results show that the expended plastic work of the grains with {110} orientation is 9.69 MPa, which is distinctly higher than those of the grains with the {001} and {111} orientations. This indicates that the formation of the {110} orientated texture would be preferred with increasing strain in good agreement with the experimental result.
文摘In this paper local compressive deforming of a hexagonal tube of aluminum (JISA1050) is investigated by an electromagnetic forming. The hexagonal tubes are annealed for 1h. at 400℃, which have 55mm width with 1mm thickness, and 10mm corner edius. The deformed ation of the hexagonal tube, i.e., bead width, is 10, 15, 20mm, respectively. The magnetic flux density in the gap between the field shaper and the external surface of hexagonal tube is measured, and the result is that the magnetic flux density for a given voltage is almost identical along the gap) and decreases with increasing the gap. The profiles and the strain distribution of the hexagonal tube de- formed are affected by the change Of the charging voltage and the dimensions of a bead width. The greater compressive strum in the cireuwtrential direction is develOPed on plane part near corner,while tensile strain on the corner occurs. A metallic block is inserted inside the hexagonal tube so that uniform profile can be obtained. The simulation of the forming is performed by a finite-element method and compared with the experimental results.
基金Sponsored by the National Basic Research Program of China(Grant No.2011CB012800 and 2011CB012804)
文摘Electromagnetic V-shape bending of small size sheet blank is investigated numerically and experimentally. Three-dimensional electromagnetic field models are established to calculate the magnetic force distribution on the sheet by software ANSYS / EMAG. Series of electromagnetic V-shape bending forming experiments are presented,in which small size uniform pressure coil and big size round flat spiral coil are used. The results show that small size uniform pressure coil is not suitable for electromagnetic forming of small size flat sheet,and the coil is susceptible to failure such as bulging,ablation and cracking. When the plane dimension of round flat spiral coil is bigger than sheet blank sizes,the induced current crowding effect will be resulted which seriously influence the magnetic force distribution on the sheet. In this case,magnetic force distribution can be adjusted through the change of the relative position between coil and sheet,the desired deformation can be obtained finally. Therefore,big size round flat spiral coil can be well applied to electromagnetic V-shape bending forming of small size flat sheet.
文摘The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as aluminum and its alloys,to be deformed through this procedure,it is useful to know the stress and strain state that occurs in the material during forming.In this work,the modeling of stresses and strains in electromagnetically deformed AlMn0.5Mg0.5 sheet was made.The modeling was achieved using the finite element method and it was verified through experimental tests.To determine the residual stresses,the X-ray diffraction method was used.The strains were established by measuring the displacements of the nodes in the network inscribed on the specimen by means of three coordinates measuring machine.A good agreement between the modeling results and experimental data was found.
基金Sponsored by the Scientific Research Foundation of Harbin Institute of Technology (Grant No. HIT.2003.10)
文摘The effects of geometrical characteristics of echelon coil on the magnetic pressure distribution and their contribution to the final shape of parts were focused and investigated through experiments and numerical simulation using FEM software ANSYS. The results show that the geometrical characteristics of echelon coil play a key role in controlling the magnetic pressure acting on the tube. They show a hump-like distribution near the interface between bigger diameter region and transition region of echelon coil, and affect the final shape of tubular parts then. With the reduction of relative diameter, the magnetic pressure in smaller diameter region decreases and its distribution gradient in transition region increases. With the augment of relative length, the magnetic pressure increases in bigger diameter region, while it almost remains constant in smaller diameter region, and the gradient in transition region enhances sharply. The distribution of magnetic pressure in the axial direction of tube agrees well with the profile of specimen.
基金Project (50875093) supported by the National Natural Science Foundation of China
文摘The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulation result agrees with the principles of uniform pressure electromagnetic actuator.The reason for coil failure was proposed.Then the magnetic forces on the sheet were input into an explicit finite element software ANSYS/LS-DYNA to analyze the deformation law of the sheet.
基金Project(50805036)supported by the National Natural Science Foundation of China
文摘Electromagnetic forming(EMF)is a high-velocity manufacturing technique which uses electromagnetic(Lorentz)body forces to shape sheet metal parts.One of the several advantages of EMF is the considerable ductility increase observed in several metals,with aluminum featuring prominently among them.Electromagnetically assisted sheet metal stamping(EMAS)is an innovative hybrid sheet metal processing technique that combines EMF into traditional stamping.To evaluate the efficiency of this technique,an experimental scheme of EMAS was established according to the conventional stamping of cylindrical parts from aluminum and the formability encountered was discussed.Furthermore,a "multi-step,loose coupling" numerical scheme was proposed to investigate the deformation behaviors based on the ANSYS Multiphysics/LS-DYNA platform through establishing user-defined subroutines.The results show that electromagnetically assisted deep drawing can remarkably improve the formability of aluminum cylindrical parts.The proposed numerical scheme can successfully simulate the related Stamping-EMF process,and the deformation characteristics of sheet metal reflect experimental results.The predicted results are also validated with the profiles of the deformed sheets in experiments.
基金National Natural Science Foundation! No. 59995440National PostDoctor Science Foundation !([19971 11)of China
文摘than 2.2, the electromagnetic pressure acting on melt can be simply expressed as Pm =B^2/wμ, and the melt shape would be known only by measuring the distribution of magnetic flux density. As a is small and makes the ratio a/8 less than 2.2, the melt shape and electromagnetic pressure for confining and shaping are determined not only by magnetic flux density B but also by melt thickness a, electromagnetic parameter μγ and current frequency f. In this paper, an equation used to calculate electromagnetic pressure acting on 'thin plate-form melt' is brought forward. The equation gives a precise relationship between electromagnetic pressure factor p and melt thickness a, electromagnetic parameter μγ and current frequency f.
基金Projects(50575052, 50805036) supported by the National Natural Science Foundation of China
文摘Electromagnetic forming is one of the high-rate forming methods that can be extensively used to form and join axisymmetric metal sheet and tube. Tendency of homogeneous radial deformation during electromagnetic compression of aluminium tube was investigated through the design optimization method based on sequential coupling numerical simulation and experiments. The results show that the tendency depends on the length ratio of tube to coil (R), which has a critical value (Rc) corresponding to the relatively homogeneous radial deformation along axial direction. The tube length relative to Rc is insensitive to the discharge voltage. When R is greater than Rc, the deformed tube presents horn shape and the shorter coil makes for local deformation. If R is less than Rc, the deformed tube presents drum shape and the longer coil contributes to larger deformation at tube end. Rc increases with coli length and could approach to 1; inversely, it could approach to 0. These results indicate the design optimization method based on the sequential coupling numerical simulation is feasible, which can be used to realize the controllable and precise deformation of metal tube.
文摘In the current practical science, the accuracy in the formability of metal alloys being the goal when using electromagnetic forming (EMF) technology, which is a high-speed processing technology that uses Lorentz forces to achieve plastic deformation of sheet metal;according to the previous analysis, the results have shown that in most cases, the Lorentz force acting on the workpiece (metal) is not uniform, there are uneven axial deformations of the metal plates which prevent the rapid advancement of today’s technology. In this article, we presented some advanced analyzes which will lead us to improve the technical solution for the problems of non-uniform axial deformations of the metals in the traditional tube electromagnetic forming technology (EMF). A field shaper is used as a practical forming tool to influence the magnetic field and magnetic pressure distribution, thereby improving the forming ability and result during the electromagnetic forming (EMF) process and we see that induced eddy current control is realized by changing the structural parameters of the magnetic field shaper;which improves the strength and controllability of the magnetic force that acts on the workpiece;thereby a greater radial magnetic pressure can be achieved with field shaper than the case without it;the field shaper regulates the electromagnetic force, the distribution of the magnetic pressure decreases, and the uniform force area of the tube increases which effectively enhances the uniform range of the pipe electromagnetic bulging and the electromagnetic induction coupling between the coil and the metallic workpiece is generally required to produce the Lorentz forces. Using COMSOL Multiphysics® simulation software helped us to accurately represent the real world, simulating multiple physical effects that happened in this model during the process.
文摘We propose a new description of a nucleon as a pair of pions. The baryon number of our description of nucleon is not 1 but 0. However, this is probable because the proton spin crisis shows that the baryon spin cannot tell the number of composing quarks anymore. Because we use the derived pion wave function to describe a nucleon, our description has automatically the pionic degree of freedom and can be compared to the constituent quark model. Using this description, we investigate the electric charge and magnetization density functions of protons and neutrons. The electric charge density function of neutron is quite similar to those of Galster model and Maints data except the magnitude of singularity. The density functions of proton also show the similar behavior as those of Kelly’s except near origin. Taking the Fourier transform of the density functions, we obtain the Sachs electromagnetic form factors that can be compared to those in the parametrization derived by Ye et al.
基金supported by the Powell Center for Construction&Environment at the University of Florida.
文摘A significant share of the technology that has emerged over the past several decades produces electromagnetic field(EMFR)radiation.Communications devices,household appliances,industrial equipment,and medical equipment and devices all produce EMFR with a variety of frequencies,strengths,and ranges.Some EMFR,such as Extremely Low Frequency(ELF),Radio Frequency(RF),and Ionizing Range(IR)radiation have been shown to have harmful effects on human health.Depending on the frequency and strength of the radiation,EMFR can have health effects at the cellular level as well as at brain,nervous,and cardiovascular levels.Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMFR.By introducing a more comprehensive field of EMFR study and practice,architects and designers can design for a safer electromagnetic(EM)indoor environment,and,as building and construction specialists,will be able to monitor and reduce EM radiation.This paper identifies the nature of EMFR in the built environment,the various EMFR sources,and its human health effects.It addresses European and US regulations for EMFR in buildings and provides a preliminary action plan.The challenges of developing measurement protocols for the various EMFR frequency ranges and determining the effects of EMFR on building occu-pants are discussed.This paper argues that a mature method for measuring EMFR in building environments and linking these measurements to human health impacts will foster occupant health and lead to the adequate development of safeguards for occupants of buildings in future research.
基金supported by the Major State Basic Research Development Program of China (No.2006CB605203)the National High-Tech Research and Development Program of China (No.2009AA03Z534)
文摘A two-dimensional computational model coupling an annular electromagnetic stirring(A-EMS) with a macroscopic heat and fluid flow analysis in Al-alloys semisolid slurry preparation was developed.The dynamic evolutions of the electromagnetic field,flow field,and temperature field were presented successfully by commercial software ANSYS 10.0 with corresponding experimental verification.A horizontally rotational electromagnetic field and,thereby,a more intensive velocity field were uniformly distributed in the stirred melt even at commercial frequency,and thus,a lower temperature difference in the stirred melt and subsequent uniformly fine microstructures were obtained compared with the normal electromagnetic stirring.The simulation results were in good agreement with experimental ones.
文摘The hot top EMC (electromagnetic casting) method was put forward, namely, the shape of top liquid column was formed by the hot top in the screen and the semi suspended liquid column was formed by the electromagnetic force nearby the liquid solid interface frontier. Using the numerical simulating technique, the temperature distribution was discussed, the effect of parameters such as upper conduct distance (UCD), cooling water rate of flow, pouring temperature and liquid column height on casting velocity were studied, the relationship among them was confirmed finally. According to the calculated results, the hot top EMC shaping system was designed and a lot of experiments were performed. The pure Al thin slabs of 480 mm×20 mm×850 mm were made successfully. The result showed that the casting velocity curve obtained experimentally almost coincides to the calculated one.
文摘In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field (EMF) and the levitation characteristics in the melting processes are analyzed. It is shown that in the processes of levitation melting with cold crucible, the power frequency and cold crucible structure are the decisive factors for the ability of magnetic flux penetrating into cold crucible. The magnetic flux density in cold crucible is reduced as the increasing of power frequency, and this tendency becomes stronger when the power frequency is higher than 100kHz. The segmented structure of cold crucible can reduce the induction eddy in itself effectively, and the higher the power frequency is, the better the result is. So, a cold crucible can be segmented into 16-20 sectors for high frequency electromagnetic field and/or 8-12 sectors for lower frequency one. It is also shown that the levitation force of melting charge is related to coil current as a parabolic function.