Linear electromagnetic actuators(LEAs) are widely used in tokamaks,but they are extremely sensitive to and are prone to fail in a high-strength stray magnetic field(SMF),which is usually a concomitant with tokamaks.In...Linear electromagnetic actuators(LEAs) are widely used in tokamaks,but they are extremely sensitive to and are prone to fail in a high-strength stray magnetic field(SMF),which is usually a concomitant with tokamaks.In this paper,a multi-physics coupling analysis model of LEA,including magnetic field,electric circuit and mechanical motion,is proposed,and the dynamic characteristics of LEAs in SMFs are studied in detail based on the proposed model.The failure mechanism of LEAs in SMFs is revealed,and the influence of SMFs on the dynamic performance of LEAs is studied and quantified.It is shown that the failure threshold of the LEA selected in this work under the rated condition is 27 mT and 14 mT in the positive and negative direction,respectively.Under a typical SMF of 10 mT in the negative direction,the closing time of the LEA will be extended by 40%,while its opening time will be shortened by about 10%.Experimental tests are also conducted,which verify the validity of the proposed model and the analysis results.This paper provides a basis for the diamagnetic optimization design of LEA,and it is of great significance to ensure the reliable operation of the tokamak.展开更多
As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidiscipli...As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidisciplinary method was proposed for revealing the influence mechanism of load on EMLA’s loss.The motion trajectory of EMLA is planned through tracking differentiator,an adaptive robust control was adopted to compensate the influence of load on motion trajectory.A control-electromagnetic-mechanical coupling model was established and verified experimentally.The influence laws of load change on EMLA’s loss,loss composition and loss distribution were analyzed quantitatively.The results show that the data error of experiment,and simulation result of input energy,mechanical work,and iron loss is less than 3%.The iron loss accounts for less than 54.9%of the total loss under no-load condition,while the iron loss increases with the increase of load.For iron loss distribution,only the percentage of inner yoke keeps increasing with the increase of load.The composition and distribution of loss are the basis of thermal analysis and design.展开更多
基金supported in part by the National Key R&D Program of China (No.2017YFE0301800)in part by National Natural Science Foundation of China (No. 51821005)in part by the Comprehensive Research Facility for Fusion Technology Program of China (No.2018000052-73-01-001228)
文摘Linear electromagnetic actuators(LEAs) are widely used in tokamaks,but they are extremely sensitive to and are prone to fail in a high-strength stray magnetic field(SMF),which is usually a concomitant with tokamaks.In this paper,a multi-physics coupling analysis model of LEA,including magnetic field,electric circuit and mechanical motion,is proposed,and the dynamic characteristics of LEAs in SMFs are studied in detail based on the proposed model.The failure mechanism of LEAs in SMFs is revealed,and the influence of SMFs on the dynamic performance of LEAs is studied and quantified.It is shown that the failure threshold of the LEA selected in this work under the rated condition is 27 mT and 14 mT in the positive and negative direction,respectively.Under a typical SMF of 10 mT in the negative direction,the closing time of the LEA will be extended by 40%,while its opening time will be shortened by about 10%.Experimental tests are also conducted,which verify the validity of the proposed model and the analysis results.This paper provides a basis for the diamagnetic optimization design of LEA,and it is of great significance to ensure the reliable operation of the tokamak.
基金funded by the National Natural Science Foundation of China,Grant Nos.51905319,51975341,51875326the National Key Research and Development Project,China under Grant 2017YFB0102004the Shandong Provincial Natural Science Foundation,China under Grant ZR2019MEE049.
文摘As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidisciplinary method was proposed for revealing the influence mechanism of load on EMLA’s loss.The motion trajectory of EMLA is planned through tracking differentiator,an adaptive robust control was adopted to compensate the influence of load on motion trajectory.A control-electromagnetic-mechanical coupling model was established and verified experimentally.The influence laws of load change on EMLA’s loss,loss composition and loss distribution were analyzed quantitatively.The results show that the data error of experiment,and simulation result of input energy,mechanical work,and iron loss is less than 3%.The iron loss accounts for less than 54.9%of the total loss under no-load condition,while the iron loss increases with the increase of load.For iron loss distribution,only the percentage of inner yoke keeps increasing with the increase of load.The composition and distribution of loss are the basis of thermal analysis and design.