Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality thr...Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.展开更多
This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
The sPHENIX experiment is a new generation of large acceptance detectors at the relativistic heavy ion collider at Brookhaven National Laboratory,with scientific goals focusing on probing the strongly interacting Quar...The sPHENIX experiment is a new generation of large acceptance detectors at the relativistic heavy ion collider at Brookhaven National Laboratory,with scientific goals focusing on probing the strongly interacting Quark–Gluon plasma with hard probes of jets,open heavy flavor particles,andγproduction.The EMCal detector,which covers the pseudo-rapidity region of|η|≤1.1,is an essential subsystem of sPHENIX.In this study,we focused on producing and testing EMCal blocks covering a pseudo-rapidity of|η|∈[0.8,1.1].These,in conjunction with the central pseudo-rapidity EMCal blocks,significantly enhance the sPHENIX physics capability of the jet andγparticle measurements.In this paper,the detector module production and testing of sPHENIX W-powder/scintillating fiber(W/ScFi)electromagnetic calorimeter blocks are presented.The selection of the tungsten powder,mold fabrication,QA procedures,and cosmic ray test results are discussed.展开更多
Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultras...Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not.展开更多
Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection ...Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.展开更多
In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in...In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in recent years.As a result,how to achieve efficient testing and effective control of the quality of water conservancy projects has always been a topic of discussion in the field of water conservancy engineering in our country.This paper summarizes the application of non-destructive testing technology in the quality testing and control of water conservancy projects.On the basis of explaining the connotation and application advantages of non-destructive testing technology,the non-destructive testing application strategies for concrete strength,steel corrosion and shallow cracks in water conservancy projects were studied.展开更多
This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured ...This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.展开更多
Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in ...Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic t...The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SHO-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern ofPPM EMATs, and can be used for their parameter optimization.展开更多
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a...Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected.展开更多
This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive...This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive testing system for stress concentration area of ferromagnetic materials by means of the research of metal materials inverse magnetostrictive effect mechanism. The system changes the influence degree of the stress in ferromagnetic materials’ magnetic conductance to the corresponding voltage array by using discrete wavelet analysis method to process the data, in which not only the measuring accuracy is improved, but also the stress concentration is more directly reflected. The experiments confirm that the electromagnetic stress testing method is feasible and valid.展开更多
Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of c...Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.展开更多
Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance p...Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This...This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This paper introduces pulsed electromagnetic techniques and their different case studies on defect detection as well as stress characterisation.Experimental tests have been validated and future research plans are discussed.This paper demonstrates pulsed electromagnetic non-destructive testing and evaluation for not only depth information,but also for multiple parameter measurement and multiple integration,which are important for future development.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
The WGQ type micro computer based electromagnetic nondestructive testing instrument for quality of metal material was developed on the principle of electromagnetic induction. The invention and marketing of the WGQ ins...The WGQ type micro computer based electromagnetic nondestructive testing instrument for quality of metal material was developed on the principle of electromagnetic induction. The invention and marketing of the WGQ instrument has solved the world wide tough problem of the "N" shape relation between the indicated values of testing instruments and the hardness of most metal parts, particularly steel and iron parts. It has also greatly improved the hardness testing precision of aluminium alloy. Consequently the instrument can accurately perform either the quantitative testing of aluminium alloy, steel and iron parts hardness or the qualitative testing of their internal and external defects such as cracks, over burnt and so on. Its hardness testing precision is HRB±0.7, HRC±1 and HB±10. The testing speed can reach 1 500 parts per hour. The instrument has already been successfully applied to the spot of lots of factories.展开更多
In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, T...In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.展开更多
Bridges are important elements in road system and can influence the entire economy of cities and region. Usually, these structures have high financial investments for their constructions, in this way, maintenance and ...Bridges are important elements in road system and can influence the entire economy of cities and region. Usually, these structures have high financial investments for their constructions, in this way, maintenance and conservation become so important. Inspection is a technical activity that covers several operations, including performance analysis; examination; final performance report, other operations may be necessary, such as maintenance work, recovery, strengthening and rehabilitation. Technical examination together with some test methods allows a critical and parametric judgment of the bridge performance by minimizing the subjectivity of visual evaluations, and permits a more detailed diagnosis. This paper discusses the methodology to perform tests to complement the assessment recommended by DNIT (Brazilian National Department of Transport Infrastructure), which consists only on a visual judgment. This approach provides technical basis to classify the bridges as its need and urgency of maintenance.展开更多
文摘Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
基金supported by the National Key R&D Program from the Ministry of Science and Technology of China(Nos.2019YFE0114300 and 2022YFA1604900)the National Natural Science Foundation of China(No.11905036)+1 种基金the STCSM(No.23590780100)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030200)。
文摘The sPHENIX experiment is a new generation of large acceptance detectors at the relativistic heavy ion collider at Brookhaven National Laboratory,with scientific goals focusing on probing the strongly interacting Quark–Gluon plasma with hard probes of jets,open heavy flavor particles,andγproduction.The EMCal detector,which covers the pseudo-rapidity region of|η|≤1.1,is an essential subsystem of sPHENIX.In this study,we focused on producing and testing EMCal blocks covering a pseudo-rapidity of|η|∈[0.8,1.1].These,in conjunction with the central pseudo-rapidity EMCal blocks,significantly enhance the sPHENIX physics capability of the jet andγparticle measurements.In this paper,the detector module production and testing of sPHENIX W-powder/scintillating fiber(W/ScFi)electromagnetic calorimeter blocks are presented.The selection of the tungsten powder,mold fabrication,QA procedures,and cosmic ray test results are discussed.
基金Funded by National Natural Science Foundation of China(Nos.51878350,11832013,52078250)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0236)。
文摘Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not.
文摘Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.
文摘In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in recent years.As a result,how to achieve efficient testing and effective control of the quality of water conservancy projects has always been a topic of discussion in the field of water conservancy engineering in our country.This paper summarizes the application of non-destructive testing technology in the quality testing and control of water conservancy projects.On the basis of explaining the connotation and application advantages of non-destructive testing technology,the non-destructive testing application strategies for concrete strength,steel corrosion and shallow cracks in water conservancy projects were studied.
基金National Research Foundation of Korea(NRF)Funded by the Korean Government(MSIT)under Grant Nos.RS-2023-00210317 and 2021R1A4A3030117the Digital-Based Building Construction and Safety Supervision Technology Research Program Funded by the Ministry of Land,Infrastructure,and Transport of the Korean Government under Grant No.RS-2022-00143493the Korea Institute of Civil Engineering and Building Technology(KICT)of the Republic of Korea,Project under Grant No.2023-0097。
文摘This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.
基金National Natural Science Foundation of China(No.61201412)Ntural Science Foundation of Shanxi Province(No.2012021011-5)
文摘Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金supported by National Natural Science Foundation of China(Grant Nos.51075012,10772008)Beijing Municipal Natural Science Foundation of China(Grant No.1122005)
文摘The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SHO-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern ofPPM EMATs, and can be used for their parameter optimization.
基金Project(10974115) supported by the National Natural Science Foundation of China
文摘Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected.
文摘This paper proposes an effective method for early diagnosis (stress concentrating) of the oil-gas pipeline. Based on the principle of electromagnetic induction Faraday, we have designed and realized the nondestructive testing system for stress concentration area of ferromagnetic materials by means of the research of metal materials inverse magnetostrictive effect mechanism. The system changes the influence degree of the stress in ferromagnetic materials’ magnetic conductance to the corresponding voltage array by using discrete wavelet analysis method to process the data, in which not only the measuring accuracy is improved, but also the stress concentration is more directly reflected. The experiments confirm that the electromagnetic stress testing method is feasible and valid.
基金National Key Research and Development Project of China(No.2018YFB1701200)。
文摘Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.
文摘Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
基金Sichuan province Science and Technology department( No. 2011GZ0002 and No. 2013HH0059)the university basic scientific research project( No. ZYGX2013J090 ) for funding the work
文摘This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This paper introduces pulsed electromagnetic techniques and their different case studies on defect detection as well as stress characterisation.Experimental tests have been validated and future research plans are discussed.This paper demonstrates pulsed electromagnetic non-destructive testing and evaluation for not only depth information,but also for multiple parameter measurement and multiple integration,which are important for future development.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
文摘The WGQ type micro computer based electromagnetic nondestructive testing instrument for quality of metal material was developed on the principle of electromagnetic induction. The invention and marketing of the WGQ instrument has solved the world wide tough problem of the "N" shape relation between the indicated values of testing instruments and the hardness of most metal parts, particularly steel and iron parts. It has also greatly improved the hardness testing precision of aluminium alloy. Consequently the instrument can accurately perform either the quantitative testing of aluminium alloy, steel and iron parts hardness or the qualitative testing of their internal and external defects such as cracks, over burnt and so on. Its hardness testing precision is HRB±0.7, HRC±1 and HB±10. The testing speed can reach 1 500 parts per hour. The instrument has already been successfully applied to the spot of lots of factories.
文摘In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.
文摘Bridges are important elements in road system and can influence the entire economy of cities and region. Usually, these structures have high financial investments for their constructions, in this way, maintenance and conservation become so important. Inspection is a technical activity that covers several operations, including performance analysis; examination; final performance report, other operations may be necessary, such as maintenance work, recovery, strengthening and rehabilitation. Technical examination together with some test methods allows a critical and parametric judgment of the bridge performance by minimizing the subjectivity of visual evaluations, and permits a more detailed diagnosis. This paper discusses the methodology to perform tests to complement the assessment recommended by DNIT (Brazilian National Department of Transport Infrastructure), which consists only on a visual judgment. This approach provides technical basis to classify the bridges as its need and urgency of maintenance.