In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency....In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.The aim of this work is to analyze the influence mechanism of iron powder content on the electromagnetic and mechanical performance of SMGC,so as to provide theoretical guidance for the design of soft magnetic layer within airport pavement structure.The results show that the increase of iron powder content reduces the resistance and magnetoresistance of SMGC by decreasing the content of non-magnetic phases between iron powder.However,the reduction of iron powder spacing also provides a shorter transmission path for the inter-particle eddy currents in the SMGC specimen,which enhances the exchange coupling between iron powder,thus increasing the electromagnetic loss.Therefore,the compatibility between magnetic permeability and electromagnetic loss should be considered comprehensively in the mix design of SMGC.In addition,although iron powder can enhance the mechanical properties of SMGC by improving the density of geopolymer matrix,the excessive amount of iron powder can lead to a weak interfacial transition zone between geopolymer matrix and iron powder.According to the induction heating results,optimized SMGC can improve the energy transfer efficiency of induction heating by 24.03%.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the pr...This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the proposed motor can not only realize the significant reduction of NdFeB volume,but also artfully convert external magnetic flux leakage into the air-gap field to achieve competitive torque density and desirable PM usage efficiency.For extensive investigation,two topologies of the HPM are designed and analyzed for the proposed motor,which consist of the parallel-magnetic-hybrid(PMH)mode and serial-magnetic-hybrid(SMH)mode.To fully exploit the potential advantages of the proposed motor,a multi-objective optimization design is conducted,where the response surface method(RSM)and sequential non-linear programming(SNP)method are purposely utilized.After optimization,the electromagnetic performances of the motor with PMH mode and SMH mode are evaluated and compared by using finite element method(FEM),which include the back-EMF,cogging torque,output torque,and so on.Furthermore,the partial demagnetization of the ferrite PM is also investigated in the paper.Finally,the theoretical analysis and simulation study verify the effectiveness of the proposed motor and corresponding optimization design.展开更多
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i...Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).展开更多
Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are e...Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.展开更多
The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic charact...The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic characteristics.Firstly,the topology and working principle of the AFPMMM is introduced,and the model is transferred into a mathematical model in 3D cartesian coordinate.Then,the volume integral method and equivalent current sheets model is applied to find the 3D magnetic field distribution function of Halbach rotor.A unified form expression can be obtained by two dimensional discrete fourier transform(2-D DFT)is applied on the 3D magnetic field distribution function.Thirdly,the conductive and nonconductive regions of AFPMMM will be formulated by the second order vector potential(SOVP)to built the 3D analytic model.The expression of the lift force,torque and power losses was derived.Besides,the relationship between electromagnetic characteristics and structural parameters of the AFPMMM were analyzed based on 3D analytic model and validated using the 3D finite element analysis(FEA).Finally,the experiments based on a small scale prototype are carried out to verify the analytical results.展开更多
Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resultin...Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resulting in irreversible demagnetization of the permanent magnet(PM).To obtain low rotor temperature,two novel rotor structures with low rotor eddy current loss are proposed in this paper.With the output torque and air gap flux density unchanged,the performance of HSPMMs with the two proposed rotor structures are analyzed based on finite element algorithm(FEA),including eddy current loss and temperature.Finally,the appropriate parameters of the proposed rotor structures are selected,and the electromagnetic(EM)performance,rotor stress and temperature are compared with those of the conventional rotor structure.Index Terms-Eddy current loss,finite element algorithm(FEA),electromagnetic(EM)performance,high speed permanent magnet machines(HSPMMs).展开更多
In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-...In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property.The rotor topology and design principles of the proposed machine are also introduced.Then,a multi-objective optimization method is adopted based on the sensitivity analysis,and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ).Moreover,the electromagnetic characteristics of conventional IPM machine,conventional IFVF-IPM machine(CIFVF-IPM)and the novel IFVF-IPM machine are compared based on the finite element analysis(FEA)method which includes flux linkage,inductances characteristic,torque-speed envelops and power characteristic,as well as evaluation of the risk of irreversible demagnetization.Finally,the experiment results show that the IFVF-IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization,which indicates the validity and feasibility of the proposed machine.展开更多
In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic inte...In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic interference (EMI) shielding performances and mechanical properties. The obtained CF/PEKK composites possessed outstanding EMI and mechanical performances, as anticipated. Specifically, the CF/PEKK composites modified with MXene at 1 mg mL–1 exhibited an excellent EMI shielding effectiveness of 65.2 dB in the X-band, a 103.1% enhancement compared with the unmodified CF/PEKK composites. The attractive EMI shielding performances of CF/PEKK composites originated from enhanced ohmic losses and multiple reflections of electromagnetic waves with the help of the MXene and CF layers. In addition, CF/PEKK composites achieved the best mechanical properties by optimizing the dispersion concentration of MXene to 0.1 mg mL–1 . The flexural strength, flexural modulus, and interlaminar shear strength of CF/PEKK composites reached 1127 MPa, 81 GPa, and 89 MPa, which were 28.5%, 9.5%, and 29.7% higher than that of the unmodified CF/PEKK composites, respectively. Such improvement in mechanical properties could be ascribed to the comprehensive effect of mechanical interlocking, hydrogen bonds, and Van der Waals forces between the introduced MXene and CF, PEKK, respectively.展开更多
With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electroni...With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electronic devices from radiation pollution.In this work,the flexible and ultrathin dopamine modified MXene@cellulose nanofiber(DM@CNF)composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach.The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film.By adjusting the layer number,the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m^(–3) with a thickness about 19μm.Interestingly that,the DM@CNF film with annealing treatment achieves significant improvement in conductivity(up to 17264 S·m^(–1))and EMI properties(SE of 41.90 dB and SSE/t of 10169 dB·cm^(2)·g–1),which still maintains relatively high mechanical properties.It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based,carbon-based and MXene-based shielding materials reported in the literature.These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.展开更多
Electromagnetic(EM)absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation.As characteristic functional media that...Electromagnetic(EM)absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation.As characteristic functional media that can interact with electric or magnetic field branch,EM wave absorption materials(EWAMs)have received extensive attention and realized considerable development in the past two decades,where carbon-based composites are always considered as promising candidates for high-performance EMAWs due to their synergetic loss mechanism as well as diversified composition and microstructure design.Recent progress indicates that there is more and more interest in the fabrication of carbon-based composites with unique core–shell configuration.On one hand,core–shell configuration usually ensures good chemical homogeneity of final products and provides some positive protections for the components with susceptibility to corrosion,on the other hand,it creates enough heterogeneous interfaces between different EM components,which may bring enhanced polarization effect and intensify the consumption of EM energy.In this review,we firstly introduce EM wave absorption theory,and then highlight the advances of core–shell engineering in carbonbased composites in terms of built-in carbon cores and built-out carbon shells.Moreover,we also show some special core–shell carbon-based composites,including carbon/carbon composites,assembled composites,and decorated composites.After analyzing EM absorption performance of some representative composites,we further propose some challenges and perspectives on the development of core–shell carbon-based composites.展开更多
Electromagnetic absorption(EMA)materials with light weight and harsh environmental robustness are highly desired and crucially important in the stealth of high-speed vehicles.However,meeting these two requirements is ...Electromagnetic absorption(EMA)materials with light weight and harsh environmental robustness are highly desired and crucially important in the stealth of high-speed vehicles.However,meeting these two requirements is always a great challenge,which excluded the most attractive lightweight candidates,such as carbon-based materials.In this study,SiC_(nw)-reinfbrced SiCNO(SiC_(nw)/SiCNO)composite aerogels were fabricated through the in-situ growth of SiC_(nw) in polymer-derived SiCNO ceramic aerogels by using catalyst-assisted microwave heating at ultra-low temperature and in short time.The phase composition,microstructure,and EMA property of the SiC_(nw)/SiCNO composite aerogels were systematically investigated.The results indicated that the morphology and phase composition of SiC_(nw)/SiCNO composite aerogels can be regulated easily by varying the microwave treatment temperature.The composite aerogels show excellent EMA property with minimum reflection loss of -23.9 dB@13.8 GHz,-26.5 dB@10.9 GHz,and -20.4 dB@14.5 GHz and the corresponding effective bandwidth of 5.2 GHz,3.2 GHz,and 4.8 GHz at 2.0 mm thickness for microwave treatment at 600℃,800℃,and 1000℃,respectively,which is much better than that of SiCN ceramic aerogels.The superior EMA performance is mainly attributed to the improved impedance matching,multireflection,multi-interfacial polarization,and micro current caused by migration of hopping electrons.展开更多
To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as...To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as an efficient EM wave(EMW)absorber,and systematically investigated the morphology-dependent chirality,conductivity,and microwave absorption properties.As HCl concentration[HCl]varied from 0 to 2.0 M,the morphology evolved from planar helix to 3D cross-linking network structures,the conductivity increased from 0.0019 to 0.0302 S/cm,and the EM parameters peaked at[HCl]=0.5 M.Compared to other absorbers,the PPy planar helix formed at[HCl]=0 M possessed wider absorption band(5.84 GHz),smaller matching thickness(1.6 mm),lower loading(25 wt.%),and intenser absorption(-48.17 dB).The reason lies in the strong attenuation capability,multiple resonances,multiple scattering,and good impedance matching generated by chiral PPy planar helixes with a distinctive helical configuration,doped heteroatoms(O,S),and a local conductive network.Our results suggest that PPy planar helixes offer great promise for fields such as chiral sensors,electronics,optics,chiral catalysis,and EMW absorption and shielding due to their distinctive morphology,tunable conductivity,and outstanding EMW absorption properties(EMWAPs).展开更多
Although graphene aerogels(GA)have been attracted great attention,the easy-operation and large-scale production of GA are still challenges.Further,most GA have a monolith-like appearance,limiting their application-spe...Although graphene aerogels(GA)have been attracted great attention,the easy-operation and large-scale production of GA are still challenges.Further,most GA have a monolith-like appearance,limiting their application-specific needs.Herein,we highlight graphene aerogel spheres with controllable hollow structures(HGAS)that are delicately designed and manufactured via coaxial electrospinning coupled with freeze-drying and calcination.The HGAS exhibit a spherical configuration at the macroscale,while the construction elements of graphene on the microscale showing an interconnected radial microchannel structure.Further ball-in-ball graphene aerogel spheres(BGAS)are obtained by reference to the triaxial electrospinning technology.The as-prepared spheres possess the controllable integrated conductive networks,leading to the effective dielectric loss and impedance matching thus bringing on high-performance microwave absorption.The as-obtained HGAS shows a minimum reflection loss of-52.7 dB and a broad effective absorption bandwidth(f)of 7.0 GHz with thickness of 2.3 mm.Further,the fe reaches 9.3 GHz for BGAS with thickness of 3.4 mm.Aforementioned superior microwave absorption of HGAS and BGAS confirms combination of multiaxial electrospinning and freeze-drying on the multiscale is an effective strategy for scalable fabrication of advanced microwave.absorbing functional graphene aerogel spheres.展开更多
Different amounts of absolute ethanol(0-50 mL)are used as process control agents(PCA)to prepare FeCoNiAlCr0.9 high entropy alloy(HEA)powders via 90 h ball milling.The results show that the increased amount of PCA play...Different amounts of absolute ethanol(0-50 mL)are used as process control agents(PCA)to prepare FeCoNiAlCr0.9 high entropy alloy(HEA)powders via 90 h ball milling.The results show that the increased amount of PCA plays an active role in the crystallinity of powders,and regulate the thickness and size distribution of flake particles.As the volume of PCA increases,the real and imaginary parts(ε′andε″)of complex permittivity get increased by the enhancement of the interface polarization and surface polarization,while the increase in the real and imaginary parts(μ′andμ″)of complex permeability arises from the increased anisotropic energy.The addition of PCA not only promotes the reflection loss but also extends the effective bandwidth(up to 4.28 GHz).Here,the performance adjustment of HEA electromagnetic absorber is realized by forthrightly changing the process parameters of ball milling.展开更多
基金This work was supported by National Key Research and Development Project(2020YFB1600102,2020YFA0714302)National Natural Science Foundation of China(51878164,51922030,52208430)+2 种基金Fundamental Research Funds for the Central Universities of China(2242022R10059)Natural Science Foundation of Jiangsu Province(SBK2021042206)Southeast University“Zhongying Young Scholars”Project,and Shuangchuang Program of Jiangsu Province(JSSCBS20210058).
文摘In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.The aim of this work is to analyze the influence mechanism of iron powder content on the electromagnetic and mechanical performance of SMGC,so as to provide theoretical guidance for the design of soft magnetic layer within airport pavement structure.The results show that the increase of iron powder content reduces the resistance and magnetoresistance of SMGC by decreasing the content of non-magnetic phases between iron powder.However,the reduction of iron powder spacing also provides a shorter transmission path for the inter-particle eddy currents in the SMGC specimen,which enhances the exchange coupling between iron powder,thus increasing the electromagnetic loss.Therefore,the compatibility between magnetic permeability and electromagnetic loss should be considered comprehensively in the mix design of SMGC.In addition,although iron powder can enhance the mechanical properties of SMGC by improving the density of geopolymer matrix,the excessive amount of iron powder can lead to a weak interfacial transition zone between geopolymer matrix and iron powder.According to the induction heating results,optimized SMGC can improve the energy transfer efficiency of induction heating by 24.03%.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金This work was supported in part by the Natural Science Foundation of China under Grant 51477069 and Grant 517in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions.(Corresponding author:Xiaoyong Zhu)。
文摘This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the proposed motor can not only realize the significant reduction of NdFeB volume,but also artfully convert external magnetic flux leakage into the air-gap field to achieve competitive torque density and desirable PM usage efficiency.For extensive investigation,two topologies of the HPM are designed and analyzed for the proposed motor,which consist of the parallel-magnetic-hybrid(PMH)mode and serial-magnetic-hybrid(SMH)mode.To fully exploit the potential advantages of the proposed motor,a multi-objective optimization design is conducted,where the response surface method(RSM)and sequential non-linear programming(SNP)method are purposely utilized.After optimization,the electromagnetic performances of the motor with PMH mode and SMH mode are evaluated and compared by using finite element method(FEM),which include the back-EMF,cogging torque,output torque,and so on.Furthermore,the partial demagnetization of the ferrite PM is also investigated in the paper.Finally,the theoretical analysis and simulation study verify the effectiveness of the proposed motor and corresponding optimization design.
基金The authors are grateful for the support and funding from the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120093)Foundation of National Natural Science Foundation of China(Nos.U21A2093 and 51973173)Technological Base Scientific Research Projects(Highly Thermal conductivity Nonmetal Materials).
文摘Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).
基金This work has been partly supported in part by National Natural Science Foundation of China under Grants 51877093 and 51707079in part by the National Key Research and Development Program of China under Grant YS2018YFGH000200,in part by the Key Technical Innovation Program of Hubei Province under Grant 2019AAA026.
文摘Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.
基金supported in part by the Fundamental Research Funds for the Central Universities of China under Grant No.2022JBMC050。
文摘The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic characteristics.Firstly,the topology and working principle of the AFPMMM is introduced,and the model is transferred into a mathematical model in 3D cartesian coordinate.Then,the volume integral method and equivalent current sheets model is applied to find the 3D magnetic field distribution function of Halbach rotor.A unified form expression can be obtained by two dimensional discrete fourier transform(2-D DFT)is applied on the 3D magnetic field distribution function.Thirdly,the conductive and nonconductive regions of AFPMMM will be formulated by the second order vector potential(SOVP)to built the 3D analytic model.The expression of the lift force,torque and power losses was derived.Besides,the relationship between electromagnetic characteristics and structural parameters of the AFPMMM were analyzed based on 3D analytic model and validated using the 3D finite element analysis(FEA).Finally,the experiments based on a small scale prototype are carried out to verify the analytical results.
基金This work has been partly supported by the National Natural Science Foundation of China(NSFC 51877093,51807075)National Key Research and Development Program of China(Project ID:2018YFE0100200)+2 种基金Fundamental Research Funds for the Central Universities(2019kfyXMBZ031)Project funded by China Postdoctoral Science Foundation(2019M652640)Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2018JQ5009 and Scientific Research Program Funded by Shaanxi Provincial Education Department of China under Grant No.18JK0398。
文摘Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resulting in irreversible demagnetization of the permanent magnet(PM).To obtain low rotor temperature,two novel rotor structures with low rotor eddy current loss are proposed in this paper.With the output torque and air gap flux density unchanged,the performance of HSPMMs with the two proposed rotor structures are analyzed based on finite element algorithm(FEA),including eddy current loss and temperature.Finally,the appropriate parameters of the proposed rotor structures are selected,and the electromagnetic(EM)performance,rotor stress and temperature are compared with those of the conventional rotor structure.Index Terms-Eddy current loss,finite element algorithm(FEA),electromagnetic(EM)performance,high speed permanent magnet machines(HSPMMs).
基金This work was supported in part by the National Natural Science Foundation of China under grant no.52067008.
文摘In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property.The rotor topology and design principles of the proposed machine are also introduced.Then,a multi-objective optimization method is adopted based on the sensitivity analysis,and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ).Moreover,the electromagnetic characteristics of conventional IPM machine,conventional IFVF-IPM machine(CIFVF-IPM)and the novel IFVF-IPM machine are compared based on the finite element analysis(FEA)method which includes flux linkage,inductances characteristic,torque-speed envelops and power characteristic,as well as evaluation of the risk of irreversible demagnetization.Finally,the experiment results show that the IFVF-IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization,which indicates the validity and feasibility of the proposed machine.
基金supported by the Shanghai Science and Tech-nology Committee(No.22511102400)Prof.Zhang would like to appreciate the financial support from the Fundamental Research Funds for the Central Universities(No.2232020G-12)+1 种基金the Fund of National Engineering Research Center for Commercial Aircraft Manufacturing(No.COMAC-SFGS-2022-2376)the Textile Vi-sion Basic Research Program(No.J202105).
文摘In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic interference (EMI) shielding performances and mechanical properties. The obtained CF/PEKK composites possessed outstanding EMI and mechanical performances, as anticipated. Specifically, the CF/PEKK composites modified with MXene at 1 mg mL–1 exhibited an excellent EMI shielding effectiveness of 65.2 dB in the X-band, a 103.1% enhancement compared with the unmodified CF/PEKK composites. The attractive EMI shielding performances of CF/PEKK composites originated from enhanced ohmic losses and multiple reflections of electromagnetic waves with the help of the MXene and CF layers. In addition, CF/PEKK composites achieved the best mechanical properties by optimizing the dispersion concentration of MXene to 0.1 mg mL–1 . The flexural strength, flexural modulus, and interlaminar shear strength of CF/PEKK composites reached 1127 MPa, 81 GPa, and 89 MPa, which were 28.5%, 9.5%, and 29.7% higher than that of the unmodified CF/PEKK composites, respectively. Such improvement in mechanical properties could be ascribed to the comprehensive effect of mechanical interlocking, hydrogen bonds, and Van der Waals forces between the introduced MXene and CF, PEKK, respectively.
基金supported by the National Key Research and Development Program of China(No.2022YFB3807200)the National Natural Science Foundation of China(Nos.52201022 and 21973012)+1 种基金the Natural Science Foundation of Fujian Province(Nos.2020J01474,2021J06011,and 2020J01351)the“Qishan Scholar”Scientific Research Startup Project of Fuzhou University.
文摘With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electronic devices from radiation pollution.In this work,the flexible and ultrathin dopamine modified MXene@cellulose nanofiber(DM@CNF)composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach.The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film.By adjusting the layer number,the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m^(–3) with a thickness about 19μm.Interestingly that,the DM@CNF film with annealing treatment achieves significant improvement in conductivity(up to 17264 S·m^(–1))and EMI properties(SE of 41.90 dB and SSE/t of 10169 dB·cm^(2)·g–1),which still maintains relatively high mechanical properties.It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based,carbon-based and MXene-based shielding materials reported in the literature.These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.
基金supported by the National Natural Science Foundation of China(No.21676065).
文摘Electromagnetic(EM)absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation.As characteristic functional media that can interact with electric or magnetic field branch,EM wave absorption materials(EWAMs)have received extensive attention and realized considerable development in the past two decades,where carbon-based composites are always considered as promising candidates for high-performance EMAWs due to their synergetic loss mechanism as well as diversified composition and microstructure design.Recent progress indicates that there is more and more interest in the fabrication of carbon-based composites with unique core–shell configuration.On one hand,core–shell configuration usually ensures good chemical homogeneity of final products and provides some positive protections for the components with susceptibility to corrosion,on the other hand,it creates enough heterogeneous interfaces between different EM components,which may bring enhanced polarization effect and intensify the consumption of EM energy.In this review,we firstly introduce EM wave absorption theory,and then highlight the advances of core–shell engineering in carbonbased composites in terms of built-in carbon cores and built-out carbon shells.Moreover,we also show some special core–shell carbon-based composites,including carbon/carbon composites,assembled composites,and decorated composites.After analyzing EM absorption performance of some representative composites,we further propose some challenges and perspectives on the development of core–shell carbon-based composites.
基金the financial support from the National Natural Science Foundation of China(Nos.U1904180 and 52072344)Excellent Young Scientists Fund of Henan Province(No.202300410369)+1 种基金Henan Province University Innovation Talents Support Program(No.21HASTIT001)China Postdoctoral Science Foundation(No.2021M692897).
文摘Electromagnetic absorption(EMA)materials with light weight and harsh environmental robustness are highly desired and crucially important in the stealth of high-speed vehicles.However,meeting these two requirements is always a great challenge,which excluded the most attractive lightweight candidates,such as carbon-based materials.In this study,SiC_(nw)-reinfbrced SiCNO(SiC_(nw)/SiCNO)composite aerogels were fabricated through the in-situ growth of SiC_(nw) in polymer-derived SiCNO ceramic aerogels by using catalyst-assisted microwave heating at ultra-low temperature and in short time.The phase composition,microstructure,and EMA property of the SiC_(nw)/SiCNO composite aerogels were systematically investigated.The results indicated that the morphology and phase composition of SiC_(nw)/SiCNO composite aerogels can be regulated easily by varying the microwave treatment temperature.The composite aerogels show excellent EMA property with minimum reflection loss of -23.9 dB@13.8 GHz,-26.5 dB@10.9 GHz,and -20.4 dB@14.5 GHz and the corresponding effective bandwidth of 5.2 GHz,3.2 GHz,and 4.8 GHz at 2.0 mm thickness for microwave treatment at 600℃,800℃,and 1000℃,respectively,which is much better than that of SiCN ceramic aerogels.The superior EMA performance is mainly attributed to the improved impedance matching,multireflection,multi-interfacial polarization,and micro current caused by migration of hopping electrons.
基金supported by the National Natural Science Foundation of China(Grant No. 52073260)the Public Utility Items of Zhejiang Province (Grant No. LGG21E020002)+1 种基金the Industrial Key Projects of Jinhua City (Grant No.2019A12238)the Self-Topic Fund of Zhejiang Normal University(Grant No. 2020ZS04)
文摘To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as an efficient EM wave(EMW)absorber,and systematically investigated the morphology-dependent chirality,conductivity,and microwave absorption properties.As HCl concentration[HCl]varied from 0 to 2.0 M,the morphology evolved from planar helix to 3D cross-linking network structures,the conductivity increased from 0.0019 to 0.0302 S/cm,and the EM parameters peaked at[HCl]=0.5 M.Compared to other absorbers,the PPy planar helix formed at[HCl]=0 M possessed wider absorption band(5.84 GHz),smaller matching thickness(1.6 mm),lower loading(25 wt.%),and intenser absorption(-48.17 dB).The reason lies in the strong attenuation capability,multiple resonances,multiple scattering,and good impedance matching generated by chiral PPy planar helixes with a distinctive helical configuration,doped heteroatoms(O,S),and a local conductive network.Our results suggest that PPy planar helixes offer great promise for fields such as chiral sensors,electronics,optics,chiral catalysis,and EMW absorption and shielding due to their distinctive morphology,tunable conductivity,and outstanding EMW absorption properties(EMWAPs).
基金This work was financially supported by the National Natural Science Foundation of China(No.51903213)the Science and Technology Planning Project of Sichuan Province(Nos.2018GZ0132 and 2018GZ0427).
文摘Although graphene aerogels(GA)have been attracted great attention,the easy-operation and large-scale production of GA are still challenges.Further,most GA have a monolith-like appearance,limiting their application-specific needs.Herein,we highlight graphene aerogel spheres with controllable hollow structures(HGAS)that are delicately designed and manufactured via coaxial electrospinning coupled with freeze-drying and calcination.The HGAS exhibit a spherical configuration at the macroscale,while the construction elements of graphene on the microscale showing an interconnected radial microchannel structure.Further ball-in-ball graphene aerogel spheres(BGAS)are obtained by reference to the triaxial electrospinning technology.The as-prepared spheres possess the controllable integrated conductive networks,leading to the effective dielectric loss and impedance matching thus bringing on high-performance microwave absorption.The as-obtained HGAS shows a minimum reflection loss of-52.7 dB and a broad effective absorption bandwidth(f)of 7.0 GHz with thickness of 2.3 mm.Further,the fe reaches 9.3 GHz for BGAS with thickness of 3.4 mm.Aforementioned superior microwave absorption of HGAS and BGAS confirms combination of multiaxial electrospinning and freeze-drying on the multiscale is an effective strategy for scalable fabrication of advanced microwave.absorbing functional graphene aerogel spheres.
基金the National Natural Science Foundation of China(Nos.51577021 and U1704253)the National Key R&D Program of China(No.2017YFB0703103)the Fundamental Research Funds for the Central Universities(No.DUT20GF111)。
文摘Different amounts of absolute ethanol(0-50 mL)are used as process control agents(PCA)to prepare FeCoNiAlCr0.9 high entropy alloy(HEA)powders via 90 h ball milling.The results show that the increased amount of PCA plays an active role in the crystallinity of powders,and regulate the thickness and size distribution of flake particles.As the volume of PCA increases,the real and imaginary parts(ε′andε″)of complex permittivity get increased by the enhancement of the interface polarization and surface polarization,while the increase in the real and imaginary parts(μ′andμ″)of complex permeability arises from the increased anisotropic energy.The addition of PCA not only promotes the reflection loss but also extends the effective bandwidth(up to 4.28 GHz).Here,the performance adjustment of HEA electromagnetic absorber is realized by forthrightly changing the process parameters of ball milling.