With 40 years of development, bio-macromolecule cryo-electron microscopy(cryo-EM) has completed its revolution in terms of resolution and currently plays a highly important role in structural biology study. Accordin...With 40 years of development, bio-macromolecule cryo-electron microscopy(cryo-EM) has completed its revolution in terms of resolution and currently plays a highly important role in structural biology study. According to different specimen states, cryo-EM involves three specific techniques: single-particle analysis(SPA), electron tomography and subtomogram averaging, and electron diffraction. None of these three techniques have realized their full potential for solving the structures of bio-macromolecules and therefore need additional development. In this review, the current existing bottlenecks of cryo-EM SPA are discussed with theoretical analysis, which include the air–water interface during specimen cryo-vitrification, bio-macromolecular conformational heterogeneity, focus gradient within thick specimens, and electron radiation damage. Furthermore, potential solutions of these bottlenecks worthy of further investigation are proposed and discussed.展开更多
基金supported by the Science Funds from the Chinese Academy of Sciences(Grant Nos.ZDKYYQ20170002 and XDB08030202)the Science Funds from the Ministry of Science and Technology of China(Grant Nos.2017YFA0504700 and 2014CB910700)
文摘With 40 years of development, bio-macromolecule cryo-electron microscopy(cryo-EM) has completed its revolution in terms of resolution and currently plays a highly important role in structural biology study. According to different specimen states, cryo-EM involves three specific techniques: single-particle analysis(SPA), electron tomography and subtomogram averaging, and electron diffraction. None of these three techniques have realized their full potential for solving the structures of bio-macromolecules and therefore need additional development. In this review, the current existing bottlenecks of cryo-EM SPA are discussed with theoretical analysis, which include the air–water interface during specimen cryo-vitrification, bio-macromolecular conformational heterogeneity, focus gradient within thick specimens, and electron radiation damage. Furthermore, potential solutions of these bottlenecks worthy of further investigation are proposed and discussed.