The ternary rare-earth aluminum germanide GdAlGe with tetragonal structure is systematically studied by x-ray diffraction,magnetic and electric measurements.The magnetic and electric properties of GdAlGe are strongly ...The ternary rare-earth aluminum germanide GdAlGe with tetragonal structure is systematically studied by x-ray diffraction,magnetic and electric measurements.The magnetic and electric properties of GdAlGe are strongly related to its special magnetic structure formed by magnetic Gd3 isosceles triangles△s.The GdAlGe orders ferromagnetically at 21 K due to the exchanging interaction of Gd3△↑-△↑Gd3.The mechanism of magnetic transport originates from the slip scattering induced by Stoner spin fluctuation in the magnetic ordering region and the spin wave scattering induced by the thermal photon excitation and phonon scattering in the paramagnetic region.The positive magnetoresistance is observed in GdAlGe,which might be due to the disordered magnetic scatter induced by magnetic anisotropy in GdAlGe.展开更多
Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all pr...Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.展开更多
The geomagnetic night-time values were used to estimate the electromagnetic response function Q1 for half-year period. If the spatial structure of the source field can be described by the approximation, one can estim...The geomagnetic night-time values were used to estimate the electromagnetic response function Q1 for half-year period. If the spatial structure of the source field can be described by the approximation, one can estimate the Q1 value using the single-station Z/H method. This technique enables us to carry out regional deep gcomagnetic sounding by the method. The data used for analyses are geomagnetic night-time values for about, typically, 26 years from 5 good-quality stations and for several years from 34 stations distributed over the globe. The results indicate that the night-time values yield more reliable response estimates for half-year period compared to the usual estimates obtained from daily means. It implies that the approximation for the night-time fields holds good for the half-year period, but the daily means are not suitable for estimating the response function of the semi-annual variations by using the single-station method. Source field analyses for daily means data and night-time means data have also been carried out in this paper.展开更多
The undesirable absorption bandwidth is the main limitation for the application of microwave absorbing materials.Noting that the design of structure and composition of absorbing coating allows it to obtain a satisfyin...The undesirable absorption bandwidth is the main limitation for the application of microwave absorbing materials.Noting that the design of structure and composition of absorbing coating allows it to obtain a satisfying absorption bandwidth and to avoid weight increasing,honeycomb and its sandwich structures coated by various absorbant have been developed and measured using an arch measurement system over2-18 GHz.To further understand the absorption mechanisms of honeycomb structural materials,simulation based on finite element method and transmission line theory is performed to analyze the different responses to the applied microwave between honeycomb structural materials and uniform-medium slab materials.The proper composition design allows control over the microwave loss mechanisms,which optimize the coating to possess both of the dielectric and magnetic advantages.For the honeycomb structural materials,the magnetic resonation is found for the first time,which is resulting from the periodic honeycomb walls on both sides of the dielectric cavity(consisting of the aramid paper interlayer and vacuum hexagonal prisms).In addition,the conversion of structure from solid to honeycomb brings about changes in impedance,propagating path,effective wavelength,effective attenuation area,microwave phases,and inductive coupling effect,etc.,which result in a better microwave absorbing performance.The honeycomb sandwich structure coated by CIP/CB/EP with the weight ratio of 4:0.03:1 shows the absorption bandwidth of~9.8 GHz for reflection loss(RL)lower than-10 dB which covers part of the S and C bands and almost the whole X and Ku bands.展开更多
An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge...An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.展开更多
In this work, the prerequisite and mode of electromagnetic response of Al nanof ilms to electromagnetic wave field was suggested. Reflectance, transmittance in infrared region and carrier density of the films was meas...In this work, the prerequisite and mode of electromagnetic response of Al nanof ilms to electromagnetic wave field was suggested. Reflectance, transmittance in infrared region and carrier density of the films was measured. With the carrier density of the films, the dependence of their plasma frequencies on the film thickness was obtained. On the other hand, the dependence of absorptance on the frequency of electromagnetic wave field was set up by using the measured reflectance and transmittance, which provided plasma frequency-film thickness relation as well. Similarity of both plasma frequency-film thickness relations proved plasma resonance as a mode of electromagnetic response in Al nanofilms.展开更多
Till now,fewer literatures have investigated the corrosion resistance of microwave absorbers,especially mental@C/carbon matrix derived from MOF composites,although it is known that carbon shells possess a protective e...Till now,fewer literatures have investigated the corrosion resistance of microwave absorbers,especially mental@C/carbon matrix derived from MOF composites,although it is known that carbon shells possess a protective effect.Herein,three kinds of morphology-controlled CoNi/C-N doped architectures were suc-cessfully fabricated via a sequence of processing,namely coprecipitation for ZIF-67,subsequent Ni^(2+) ex-change and ultimate carbonization.Apart from composition characterization,the effects of microstructure tailoring and temperature controlling on electromagnetic response as well as attenuation performance were revealed,where dodecahedron-shaped composites possessed the highest permittivity.By contrast,rod-shaped composites(CoNi/C-r-550 and CoNi/C-r-700)were endowed with superior comprehensive ab-sorption properties,e.g.,RL_(min):-49.8 dB and-64.0 dB;EAB:5.7 GHz and 4.8 GHz,respectively.Besides,samples CoNi/C-d-700 and CoNi/C-r-700 present higher corrosion potential(E_(corr))and lower corrosion current(I corr).Hence,these corrosion-resistant microwave absorbers with outstanding absorption stabil-ity,wetting effect as well as environmental adaptability,can be used as a candidate/raw material for intelligent devices.展开更多
文摘The ternary rare-earth aluminum germanide GdAlGe with tetragonal structure is systematically studied by x-ray diffraction,magnetic and electric measurements.The magnetic and electric properties of GdAlGe are strongly related to its special magnetic structure formed by magnetic Gd3 isosceles triangles△s.The GdAlGe orders ferromagnetically at 21 K due to the exchanging interaction of Gd3△↑-△↑Gd3.The mechanism of magnetic transport originates from the slip scattering induced by Stoner spin fluctuation in the magnetic ordering region and the spin wave scattering induced by the thermal photon excitation and phonon scattering in the paramagnetic region.The positive magnetoresistance is observed in GdAlGe,which might be due to the disordered magnetic scatter induced by magnetic anisotropy in GdAlGe.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075224 and 11375279)the Foundation of China Academy of Engineering Physics(Grant Nos.2008 T0401 and T0402)
文摘Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
文摘The geomagnetic night-time values were used to estimate the electromagnetic response function Q1 for half-year period. If the spatial structure of the source field can be described by the approximation, one can estimate the Q1 value using the single-station Z/H method. This technique enables us to carry out regional deep gcomagnetic sounding by the method. The data used for analyses are geomagnetic night-time values for about, typically, 26 years from 5 good-quality stations and for several years from 34 stations distributed over the globe. The results indicate that the night-time values yield more reliable response estimates for half-year period compared to the usual estimates obtained from daily means. It implies that the approximation for the night-time fields holds good for the half-year period, but the daily means are not suitable for estimating the response function of the semi-annual variations by using the single-station method. Source field analyses for daily means data and night-time means data have also been carried out in this paper.
基金financially supported by the National Natural Science Foundation of China(No.52071053 and U1704253)the China Postdoctoral Science Foundation(No.2020M670748)+1 种基金the National Key R&D Program of China(No.2017YFB0703103)the Fundamental Research Funds for the Central Universities(No.DUT20GF111)。
文摘The undesirable absorption bandwidth is the main limitation for the application of microwave absorbing materials.Noting that the design of structure and composition of absorbing coating allows it to obtain a satisfying absorption bandwidth and to avoid weight increasing,honeycomb and its sandwich structures coated by various absorbant have been developed and measured using an arch measurement system over2-18 GHz.To further understand the absorption mechanisms of honeycomb structural materials,simulation based on finite element method and transmission line theory is performed to analyze the different responses to the applied microwave between honeycomb structural materials and uniform-medium slab materials.The proper composition design allows control over the microwave loss mechanisms,which optimize the coating to possess both of the dielectric and magnetic advantages.For the honeycomb structural materials,the magnetic resonation is found for the first time,which is resulting from the periodic honeycomb walls on both sides of the dielectric cavity(consisting of the aramid paper interlayer and vacuum hexagonal prisms).In addition,the conversion of structure from solid to honeycomb brings about changes in impedance,propagating path,effective wavelength,effective attenuation area,microwave phases,and inductive coupling effect,etc.,which result in a better microwave absorbing performance.The honeycomb sandwich structure coated by CIP/CB/EP with the weight ratio of 4:0.03:1 shows the absorption bandwidth of~9.8 GHz for reflection loss(RL)lower than-10 dB which covers part of the S and C bands and almost the whole X and Ku bands.
基金supported by Chinese National Programs for Fundamental Research and Development(No.2012CB416605)the National Natural Science Foundation of China(No.41174090)Development Project of National Key Scientific Equipment(No.ZDYZ2012-1-05-04)
文摘An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the divole source.
文摘In this work, the prerequisite and mode of electromagnetic response of Al nanof ilms to electromagnetic wave field was suggested. Reflectance, transmittance in infrared region and carrier density of the films was measured. With the carrier density of the films, the dependence of their plasma frequencies on the film thickness was obtained. On the other hand, the dependence of absorptance on the frequency of electromagnetic wave field was set up by using the measured reflectance and transmittance, which provided plasma frequency-film thickness relation as well. Similarity of both plasma frequency-film thickness relations proved plasma resonance as a mode of electromagnetic response in Al nanofilms.
基金supported by the National Natural Science Foundation of China (Nos. U20B2026 and 51871049)。
文摘Till now,fewer literatures have investigated the corrosion resistance of microwave absorbers,especially mental@C/carbon matrix derived from MOF composites,although it is known that carbon shells possess a protective effect.Herein,three kinds of morphology-controlled CoNi/C-N doped architectures were suc-cessfully fabricated via a sequence of processing,namely coprecipitation for ZIF-67,subsequent Ni^(2+) ex-change and ultimate carbonization.Apart from composition characterization,the effects of microstructure tailoring and temperature controlling on electromagnetic response as well as attenuation performance were revealed,where dodecahedron-shaped composites possessed the highest permittivity.By contrast,rod-shaped composites(CoNi/C-r-550 and CoNi/C-r-700)were endowed with superior comprehensive ab-sorption properties,e.g.,RL_(min):-49.8 dB and-64.0 dB;EAB:5.7 GHz and 4.8 GHz,respectively.Besides,samples CoNi/C-d-700 and CoNi/C-r-700 present higher corrosion potential(E_(corr))and lower corrosion current(I corr).Hence,these corrosion-resistant microwave absorbers with outstanding absorption stabil-ity,wetting effect as well as environmental adaptability,can be used as a candidate/raw material for intelligent devices.